4 research outputs found

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the ïŹnancial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Development of a fluorescence-based microplate method for the determination of volatile fatty acids in anaerobically digested and sewage sludges

    No full text
    International audienceThis paper presents a simple, accurate and multi-sample method for the determination of volatile fatty acids (VFAs) thanks to a 96-well microplate technique. A procedure using an activating reagent of the carboxylic function (water-soluble carbodiimide EDC) and a fluorescent amino labeling reagent (N-(1-naphthyl)ethylenediamine, EDAN) allows the formation of an isoindole derivative that needs to be separated from initial fluorescent amine for efficient VFAs determination. Isolation of these fluorescent VFA-derivatives was carried out by use of the fluorescent quenching of EDAN with o-phthaldialdehyde (OPA). Quenching was most efficient at pH around 7 and by heating at 40 degrees C within the microplate reader. This optimized procedure has been applied to various carboxylic acids and other organic compounds, demonstrating that VFA exhibit the highest fluorescence responses with homogeneous results for the main ones (acetic, propionic and butyric acid, all mass concentration expressed as acetic acid equivalents). This protocol was calibrated against acetic acid and determination of VFA was thus possible in the range 3.9-2000 mg L-1 (acetic acid equivalents). Subsequent application to real samples (sewage sludges or anaerobically digested samples) and comparison to gas chromatography analyses gave accurate results, proving the great potential of our high-throughput microplate-based technique for the analysis of VFA. (C) 2011 Elsevier B.V. All rights reserved
    corecore