37 research outputs found

    Melatonin finely tunes proliferation and senescence in hematopoietic stem cells

    Get PDF
    Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system. Melatonin plays an important role as immunomodulatory and oncostatic hormone. In the present manuscript, we aimed at evaluating the activity of melatonin in modulating HSPC senescence, in the attempt to improve their hemopoietic regenerative potential. We exposed HSPCs to melatonin, in different conditions, and then analyzed the expression of genes regulating cell cycle and cell senescence. Moreover, we assessed cell senescence by β-galactosidase and telomerase activity. Our results showed the ability of melatonin to counteract HSPC senescence, thus paving the way for enhanced efficiency in their clinical application

    La Provincia di Sassari: ambiente, storia, civiltĂ 

    Get PDF
    Essere cittadino di una provincia non significa soltanto abitarvi. Significa anche lavorarvi, esercitarvi una attività che vada a vantaggio del benessere individuale e insieme del benessere della collettività. Per fare questo, per raggiungere meglio questo obiettivo, la realtà in cui si vive e si lavora bisogna conoscerla meno superficialmente di quanto normalmente non succeda. E' una constatazione che si può fare per tutti coloro che abitano in un luogo, ma che si deve fare in modo particolare quando lo strumento di conoscenza che si propone è un libro come questo

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Water-Insoluble, Thermostable, Crosslinked Gelatin Matrix for Soft Tissue Implant Development

    No full text
    In this present study, the material science background of crosslinked gelatin (GEL) was investigated. The aim was to assess the optimal reaction parameters for the production of a water-insoluble crosslinked gelatin matrix suitable for heat sterilization. Matrices were subjected to enzymatic degradation assessments, and their ability to withstand heat sterilization was evaluated. The impact of different crosslinkers on matrix properties was analyzed. It was found that matrices crosslinked with butanediol diglycidyl ether (BDDE) and poly(ethylene glycol) diglycidyl ether (PEGDE) were resistant to enzymatic degradation and heat sterilization. Additionally, at 1 v/v % crosslinker concentration, the crosslinked weight was lower than the starting weight, suggesting simultaneous degradation and crosslinking. The crosslinked weight and swelling ratio were optimal in the case of the matrices that were crosslinked with 3% and 5% v/v BDDE and PEGDE. FTIR analysis confirmed crosslinking, and the reduction of free primary amino groups indicated effective crosslinking even at a 1% v/v crosslinker concentration. Moreover, stress–strain and compression characteristics of the 5% v/v BDDE crosslinked matrix were comparable to native gelatin. Based on material science measurements, the crosslinked matrices may be promising candidates for scaffold development, including properties such as resistance to enzymatic degradation and heat sterilization

    Metformin and Vitamin D Modulate Inflammation and Autophagy during Adipose-Derived Stem Cell Differentiation

    No full text
    Adipose-derived stem cells (ADSCs) came out from the regenerative medicine landscape for their ability to differentiate into several phenotypes, contributing to tissue regeneration both in vitro and in vivo. Dysregulation in stem cell recruitment and differentiation during adipogenesis is linked to a chronic low-grade inflammation and macrophage infiltration inside the adipose tissue, insulin resistance, cardiovascular disease and obesity. In the present paper we aimed to evaluate the role of metformin and vitamin D, alone or in combination, in modulating inflammation and autophagy in ADSCs during adipogenic commitment. ADSCs were cultured for 21 days in the presence of a specific adipogenic differentiation medium, together with metformin, or vitamin D, or both. We then analyzed the expression of FoxO1 and Heat Shock Proteins (HSP) and the secretion of proinflammatory cytokines IL-6 and TNF-α by ELISA. Autophagy was also assessed by specific Western blot analysis of ATG12, LC3B I, and LC3B II expression. Our results showed the ability of the conditioned media to modulate adipogenic differentiation, finely tuning the inflammatory response and autophagy. We observed a modulation in HSP mRNA levels, and a significant downregulation in cytokine secretion. Taken together, our findings suggest the possible application of these molecules in clinical practice to counteract uncontrolled lipogenesis and prevent obesity and obesity-related metabolic disorders

    Mesenchymal Stem Cell Behavior under Microgravity: From Stress Response to a Premature Senescence

    No full text
    Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. Wharton’s jelly is a tissue in the umbilical cord that contains mesenchymal stromal cells (MSCs) with a high plasticity and differentiation potential. Their regeneration capability is compromised by cell damage and aging. The main cause of cell damage is oxidative stress coming from an imbalance between oxidant and antioxidant species. Microgravity represents a stressing condition able to induce ROS production, ultimately leading to different subcellular compartment damages. Here, we analyzed molecular programs of stemness (Oct-4; SOX2; Nanog), cell senescence, p19, p21 (WAF1/CIP1), p53, and stress response in WJ-MSCs exposed to microgravity. From our results, we can infer that a simulated microgravity environment is able to influence WJ-MSC behavior by modulating the expression of stress and stemness-related genes, cell proliferation regulators, and both proapoptotic and antiapoptotic genes. Our results suggest a cellular adaptation addressed to survival occurring during the first hours of simulated microgravity, followed by a loss of stemness and proliferation capability, probably related to the appearance of a molecular program of senescence

    Effects of the MCF-7 Exhausted Medium on hADSC Behaviour

    No full text
    Stem cells possess the ability to differentiate into different lineages and the ability to self-renew, thus representing an excellent tool for regenerative medicine. They can be isolated from different tissues, including the adipose tissue. Adipose tissue and human adipose-derived stem cells (hADSCs) are privileged candidates for regenerative medicine procedures or other plastic reconstructive surgeries. The cellular environment is able to influence the fate of stem cells residing in the tissue. In a previous study, we exposed hADSCs to an exhausted medium of a breast cancer cell line (MCF-7) recovered at different days (4, 7, and 10 days). In the same paper, we inferred that the medium was able to influence the behaviour of stem cells. Considering these results, in the present study, we evaluated the expression of the major genes related to adipogenic and osteogenic differentiation. To confirm the gene expression data, oil red and alizarin red colorimetric assays were performed. Lastly, we evaluated the expression of miRNAs influencing the differentiation process and the proliferation rate, maintaining a proliferative state. The data obtained confirmed that cells exposed to the medium maintained a stem and proliferative state that could lead to a risky proliferative phenotype
    corecore