11,689 research outputs found

    Landau level splitting due to graphene superlattices

    Full text link
    The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider non-interacting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zig-zag or along the arm-chair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the arm-chair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.Comment: 12 pages, 9 figure

    Partonic Effects in Heavy Ion Collisions at RHIC

    Full text link
    Effects of partonic interactions in heavy ion collisions at RHIC are studied in a multiphase transport model (AMPT) that includes both initial partonic and final hadronic interactions.It is found that a large parton scattering cross section is needed to understand the measured elliptic flow of pions and two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest, Hungary, March 3-7, 200

    Role of isospin physics in supernova matter and neutron stars

    Full text link
    We investigate the liquid-gas phase transition of hot protoneutron stars shortly after their birth following supernova explosion and the composition and structure of hyperon-rich (proto)neutron stars within a relativistic mean-field model where the nuclear symmetry energy has been constrained from the measured neutron skin thickness of finite nuclei. Light clusters are abundantly formed with increasing temperature well inside the neutrino-sphere for an uniform supernova matter. Liquid-gas phase transition is found to suppress the cluster yield within the coexistence phase as well as decrease considerably the neutron-proton asymmetry over a wide density range. We find symmetry energy has a modest effect on the boundaries and the critical temperature for the liquid-gas phase transition, and the composition depends more sensitively on the number of trapped neutrinos and temperature of the protoneutron star. The influence of hyperons in the dense interior of stars makes the overall equation of state soft. However, neutrino trapping distinctly delays the appearance of hyperons due to abundance of electrons. We also find that a softer symmetry energy further makes the onset of hyperon less favorable. The resulting structures of the (proto)neutron stars with hyperons and with liquid-gas phase transition are discussed.Comment: 11 pages, 7 figures, RevTe

    Inverse proximity effect at superconductor-ferromagnet interfaces: Evidence for induced triplet pairing in the superconductor

    Full text link
    Considerable evidence for proximity-induced triplet superconductivity on the ferromagnetic side of a superconductor-ferromagnet (S-F) interface now exists; however, the corresponding effect on the superconductor side has hardly been addressed. We have performed scanning tunneling spectroscopy measurements on NbN superconducting thin films proximity coupled to the half-metallic ferromagnet La2/3Ca1/3MnO3 (LCMO) as a function of magnetic field. We have found that at zero and low applied magnetic fields the tunneling spectra on NbN typically show an anomalous gap structure with suppressed coherence peaks and, in some cases, a zero-bias conductance peak. As the field increases to the magnetic saturation of LCMO where the magnetization is homogeneous, the spectra become more BCS-like and the critical temperature of the NbN increases, implying a reduced proximity effect. Our results therefore suggest that triplet-pairing correlations are also induced in the S side of an S-F bilayer.Comment: 12 pages, 3 figure

    Nothing but Relativity, Redux

    Full text link
    Here we show how spacetime transformations consistent with the principle of relativity can be derived without an explicit assumption of the constancy of the speed of light, without gedanken experiments involving light rays, and without an assumption of differentiability, or even continuity, for the spacetime mapping. Hence, these historic results could have been derived centuries ago, even before the advent of calculus. This raises an interesting question: Could Galileo have derived Einsteinian relativity

    The Renyi entropy H_2 as a rigorous, measurable lower bound for the entropy of the interaction region in multiparticle production processes

    Get PDF
    A model-independent lower bound on the entropy S of the multiparticle system produced in high energy collisions, provided by the Renyi entropy H_2, is shown to be very effective. Estimates show that the ratio H_2/S remains close to one half for all realistic values of the parameters.Comment: Eur. Phys. J. C in print, 17 pages, 5 figure

    A transformation sequencing approach to pseudorandom number generation

    Get PDF
    This paper presents a new approach to designing pseudorandom number generators based on cellular automata. Current cellular automata designs either focus on i) ensuring desirable sequence properties such as maximum length period, balanced distribution of bits and uniform distribution of n-bit tuples etc. or ii) ensuring the generated sequences pass stringent randomness tests. In this work, important design patterns are first identified from the latter approach and then incorporated into cellular automata such that the desirable sequence properties are preserved like in the former approach. Preliminary experiment results show that the new cellular automata designed have potential in passing all DIEHARD tests
    • …
    corecore