11,676 research outputs found

    A semi-analytical approach to perturbations in mutated hilltop inflation

    Full text link
    We study cosmological perturbations and observational aspects for mutated hilltop model of inflation. Employing mostly analytical treatment, we evaluate observable parameters during inflation as well as post-inflationary perturbations. This further leads to exploring observational aspects related to Cosmic Microwave Background (CMB) radiation. This semi-analytical treatment reduces complications related to numerical computation to some extent for studying the different phenomena related to CMB angular power spectrum for mutated hilltop inflation.Comment: 7 pages, 2 figures. Improved version to appear in IJMP

    Evolution of superconductivity in PrFe1-xCoxAsO with x = 0.0 to 1.0

    Full text link
    We report the synthesis and physical property characterization of PrFe1-xCoxAsO with x = 0.0 to 1.0. The studied samples are synthesized by solid state reaction route via vacuum encapsulation method. The pristine compound PrFeAsO does not show superconductivity, but rather exhibits a metallic step like transition due to spin density wave ordering of Fe moments below 150 K, followed by another upward step due to anomalous ordering of Pr moments at 12 K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co substitution at Fe site. Superconductivity appears in a narrow range of x from 0.07 to 0.25 with maximum Tc at 11.12 K for x = 0.15. Samples, with x = 0.25 exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the Pr-TN is disappeared even with x = 0.02. The magneto transport measurements below 14 Tesla on superconducting polycrystalline Co doped PrFeAsO lead to extrapolated values of the upper critical fields [Hc2(0)] of up to 60 Tesla.Comment: 15 pages Text+Fig

    Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids

    Get PDF
    While it is well-known that the electron-electron (\emph{ee}) interaction cannot affect the resistivity of a Galilean-invariant Fermi liquid (FL), the reverse statement is not necessarily true: the resistivity of a non-Galilean-invariant FL does not necessarily follow a T^2 behavior. The T^2 behavior is guaranteed only if Umklapp processes are allowed; however, if the Fermi surface (FS) is small or the electron-electron interaction is of a very long range, Umklapps are suppressed. In this case, a T^2 term can result only from a combined--but distinct from quantum-interference corrections-- effect of the electron-impurity and \emph{ee} interactions. Whether the T^2 term is present depends on 1) dimensionality (two dimensions (2D) vs three dimensions (3D)), 2) topology (simply- vs multiply-connected), and 3) shape (convex vs concave) of the FS. In particular, the T^2 term is absent for any quadratic (but not necessarily isotropic) spectrum both in 2D and 3D. The T^2 term is also absent for a convex and simply-connected but otherwise arbitrarily anisotropic FS in 2D. The origin of this nullification is approximate integrability of the electron motion on a 2D FS, where the energy and momentum conservation laws do not allow for current relaxation to leading --second--order in T/E_F (E_F is the Fermi energy). If the T^2 term is nullified by the conservation law, the first non-zero term behaves as T^4. The same applies to a quantum-critical metal in the vicinity of a Pomeranchuk instability, with a proviso that the leading (first non-zero) term in the resistivity scales as T^{\frac{D+2}{3}} (T^{\frac{D+8}{3}}). We discuss a number of situations when integrability is weakly broken, e.g., by inter-plane hopping in a quasi-2D metal or by warping of the FS as in the surface states of Bi_2Te_3 family of topological insulators.Comment: Submitted to a special issue of the Lithuanian Journal of Physics dedicated to the memory of Y. B. Levinso
    corecore