9,682 research outputs found

    Scalar sector properties of two-Higgs-doublet models with a global U(1) symmetry

    Full text link
    We analyze the scalar sector properties of a general class of two-Higgs-doublet models which has a global U(1) symmetry in the quartic terms. We find constraints on the parameters of the potential from the considerations of unitarity of scattering amplitudes, the global stability of the potential and the ρ\rho-parameter. We concentrate on the spectrum of the non-standard scalar masses in the decoupling limit which is preferred by the Higgs data at the LHC. We exhibit charged-Higgs induced contributions to the diphoton decay width of the 125\,GeV Higgs boson and its correlation with the corresponding ZγZ\gamma width.Comment: 12 pages, 15 eps figure files; minor modifications made and a few references adde

    Proton Decay and Related Processes in Unified Models with Gauged Baryon Number:

    Full text link
    In unification models based on SU(15) or SU(16), baryon number is part of the gauge symmetry, broken spontaneously. In such models, we discuss various scenarios of important baryon number violating processes like proton decay and neutron-antineutron oscillation. Our analysis depends on the effective operator method, and covers many variations of symmetry breaking, including different intermediate groups and different Higgs boson content. We discuss processes mediated by gauge bosons and Higgs bosons parallely. We show how accidental global or discrete symmetries present in the full gauge invariant Lagrangian restrict baryon number violating processes in these models. In all cases, we find that baryon number violating interactions are sufficiently suppressed to allow grand unification at energies much lower than the usual 101610^{16} GeV.Comment: (32 pages LATEX) [DOE-ER\,40757-022, CPP-93-22] {Small changes made and two references added. This version will appear in Phys. Rev. D

    Supermetallic conductivity in bromine-intercalated graphite

    Full text link
    Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to in-plane charge conductivities which increase monotonically with intercalation time toward values (for ~6 at% Br) that are significantly higher than Cu at temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic susceptibility measurements confirm that the Br dopes the graphene sheets with holes while simultaneously increasing the interplanar separation. The increase of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with the reduced diamagnetic susceptibility of the intercalated samples suggests that the observed supermetallic conductivity derives from a parallel combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure

    SU(16) grandunification: breaking scales, proton decay and neutrino magnetic moment

    Full text link
    We give a detailed renormalization group analysis for the SU(16) grandunified group with general breaking chains in which quarks and leptons transform separately at intermediate energies. Our analysis includes the effects of Higgs bosons. We show that the grandunification scale could be as low as 108.5\sim 10^{8.5} GeV and give examples where new physics could exist at relatively low energy (250\sim 250 GeV). We consider proton decay in this model and show that it is consistent with a low grandunification scale. We also discuss the possible generation of a neutrino magnetic moment in the range of 101110^{-11} to 1010μB10^{-10}\mu_B with a very small mass by the breaking of the embedded SU(2)ν_\nu symmetry at a low energy.Comment: (16 pages in REVTEX + 6 figures not included) OITS-49

    Radiative neutrino decay and CP-violation in R-parity violating supersymmetry

    Get PDF
    We calculate the radiative decay amplitude for Majorana neutrinos in trilinear R-parity violating supersymmetric framework. Our results make no assumption regarding the masses and mixings of fermions and sfermions. The results obtained are exemplary for generic models with loop-generated neutrino masses. Comparison of this amplitude with the neutrino mass matrix shows that the two provide independent probes of CP-violating phases.Comment: Latex, uses axodraw, 14 pages (small changes implemented

    Estimation of inherent governor dead-band and regulation using unscented Kalman filter

    Get PDF
    The inclusion of the governor droop and dead-band in dynamic models helps to reproduce the measured frequency response accurately and is a key aspect of model validation. Often, accurate and detailed turbine-governor information are not available for various units in an area control centre. The uncertainty in the droop also arise from the nonlinearity due to the governor valves. The droop and deadband are required to tune the secondary frequency bias factors, and to determine the primary frequency reserve. Earlier research on droop estimation did not adequately take into account the effect of dead-band and other nonlinearities. In this paper, unscented Kalman filter is used in conjunction with continuously available measurements to estimate the governor droop and the dead-band width. The effectiveness of the approach is demonstrated through simulation

    The Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors

    Full text link
    We present low temperature electrical transport experiments in five field effect transistor devices consisting of monolayer, bilayer and trilayer MoS2 films, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal that the electronic states in all films are localized well up to the room temperature over the experimentally accessible range of gate voltage. This manifests in two dimensional (2D) variable range hopping (VRH) at high temperatures, while below \sim 30 K the conductivity displays oscillatory structures in gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T0) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges in the substrate are the dominant source of disorder in MoS2 field effect devices, which leads to carrier localization as well.Comment: 10 pages, 5 figures; ACS Nano (2011

    A Test System Model for Stability Studies of UK Power Grid

    No full text
    The paper presents a test system model to study the effect of variable wind power output on the stability of future power systems. The test system is built upon a future UK transmission system model and it contains different types of generators, HVDC transmission lines, and interconnections. A poorly damped inter-area mode is present in the test system that closely resembles the Scotland-England inter-area mode existing in the UK transmission system. The study system will help to analyze the impact of increased variability in power system operating conditions on the oscillatory mode. © 2013 IEEE

    Monitoring of Heavy Metal Contamination in Fodders, Feeds and Milk in Gulbarga District of Karnataka

    Get PDF
    Xenobiotics like heavy metals are increasing in environment due to industrialization, urbanization and agricultural practices which pose threat to animal health and quality animal products. Safe animal feeds are important for health of animals, environment and for the safety of foods of animal origin especially milk (Prasad et al., 2012). To address the issue, monitoring of xenobiotics especially heavy metals in the fodder, feeds and animal products is necessary. The aim of the present study is to find out the status of heavy metals in feeds and milk of Gulbarga district in Karnataka
    corecore