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Abstract—The inclusion of the governor droop and dead-band
in dynamic models helps to reproduce the measured frequency
response accurately and is a key aspect of model validation.
Often, accurate and detailed turbine-governor information are
not available for various units in an area control centre. The
uncertainty in the droop also arise from the nonlinearity due to
the governor valves. The droop and deadband are required to
tune the secondary frequency bias factors, and to determine the
primary frequency reserve. Earlier research on droop estimation
did not adequately take into account the effect of dead-band
and other nonlinearities. In this paper, unscented Kalman filter
is used in conjunction with continuously available measurements
to estimate the governor droop and the dead-band width. The ef-
fectiveness of the approach is demonstrated through simulations.

Index Terms—Load frequency control, parameter estimation,
unscented Kalman filter, primary frequency response, governor
dead-band.

NOMENCLATURE

Subscript k kth time instant.
∆ Deviation from the rated value.
E(.) Expected value of “.”.
“ .̂ ” Estimated value “.”.
R Droop constant.
Kp Gain of the power system transfer function.
Tp Time Constant of the power system TF
β Area frequency response characteristics
B Secondary frequency bias (MW/0.1Hz)
ACE Area Control Error
∆Ptie Tie line power deviation
Ki Integral control constant
pf participation factor
d Governor deadband
Fhp Percentage of power through HP Turbine
∆Pm Deviation in Mechanical Power
∆Pload Deviation in Load Power
udk Input to the governor deadband at time = k
ydk Output of the governor deadband at time = k
xd0 Midposition of the governor deadband
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Pref Reference Power
∆Pv Deviation in Governor valve opening
Tg Governor time constant
∆Pt Deviation in turbine power
Tt Turbine time constant
∆Pr Deviation in power through reheater
Tr Reheater Time Constant
Pe Electrical Power
D Generator damping constant
H Generator inertia
ω Generator speed
x,x− System state and predicted state vector
u System input vector
q Process noise
Q Process noise covariance matrix
R Measurement noise covariance matrix
f Nonlinear system model
h Measurement function
P,P− State and Predicted state covariance matrix
χ,χ2 Sigma and predicated sigma points
Y− Predicted measurement sigma points
µ Predicted measurement vector
y Measurement
S Measurement covariance matrix
C Cross covariance of χ−andY −

K Kalman Gain matrix

I. INTRODUCTION

INVESTIGATIONS into the major blackouts in the world
have revealed the inadequacy of updated dynamic models

to simulate the actual system dynamics accurately. It has been
noted in one study that more than 50% plants in North Amer-
ica have inadequate information about turbine-governor time
constants and other important parameters [1]. As a result, the
simulated frequency response differs from the actual response
following disturbances [2]. The primary frequency response
(PFR) of the utilities may reduce because of diminishing
inertia due to penetration of non-synchronous type generation
into the system, lesser number of generators participating
in frequency control, and ageing governor systems. It was
concluded in [3] that existing standards may not be adequate
in determining the reserve requirement and also revealed
insufficient reserve and weak correlation between PFR and
total load. Due to ancillary services pricing and uncertain
system inertia, there is an increasing requirement of estimating
the PFR of the system, optimizing the total reserve, as well as
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monitoring the reserve available from individual generators.
In this context, online estimation of the parameters related
to primary frequency control from measurements is crucial.
Updated information about all these parameters can also be
used in adaptive LFC, estimating PFR after a disturbance [4].

The speed and magnitude of the unit PFR is determined
by the governor dead-band, ramp-rate constraints and the
droop. The net droop of a control area is representative
of its area frequency response characteristics (β) and how
stiff the area frequency is against load-generation unbalances.
In practice, the actual β of an area is seldom known, but
it can be approximated from the overall area droop, and
used as a frequency bias coefficient (stated as 10B, where
B is in MW/0.1Hz) in secondary frequency controllers [5].
Inaccurate setting of frequency bias causes frequency and tie
line power oscillations impacting the overall dynamics [6].
Earlier research on estimation of β was fairly accurate for
generators without governor dead-band [7], [8], [9], [10], [11].
These methods, however, reported gross estimation errors with
dead-band and other nonlinearities [7]. It was shown in [2] that
inclusion of an intentional deadband in the governor simulation
models improves the matching between the simulated and
actual PFR. This is, however, not always a practical option.
For instance, the Multiregional Modeling Working Group-
Tennessee Valley Authority (MMWG-TVA) model has 3000+
machines with a total capacity of 591 GW. Out of the 3000+
generators, 45.42 of the total generation capacity is attached
with active governors and 92.07 of these generators have
four basic types of governors- IEEEG1, IEEESGO, TGOV1
and GAST [2]. There is no scope for including unintentional
governor deadband in these models and/as very often the
information is unavailable [12].

In this paper, it is proposed to estimate the droop and
governor dead-band width using the unscented Kalman filter
(UKF). The method relies on three types of measurements
the integral area control error (ACE) signal sent from the
control centre, frequency measurements obtained from phasor
measurement unit (PMU), and individual unit mechanical
power. The mechanical power is not directly observable and
may be obtained using the electrical power measurements and
the accelerating power (which is calculated using the speed
signal). The choice of UKF is guided by its superior ability
to handle nonlinearities efficiently [13], when compared to
other parameter estimation techniques used with power system
measurements, such as least square [14], extended Kalman
filter (EKF) [15], particle filter [16], trajectory sensitivity [17].

The rest of the paper is organized as follows the relevant
mathematical models of load frequency control and UKF
are briefly explained in Sec II and Sec III respectively. The
performance of the method has been assessed in Sec IV
using linear models and in Sec V for non-linear models. The
performance of the proposed method has been compared with
the recursive least square technique in Sec VI. The impact of
measurement noise has been studied in Sec VII. Impact of
GRC and bad data detection have been provided in Sec VIII
and Sec IX respectively. Section X is the concluding section.

II. MATHEMATICAL MODEL OF LOAD
FREQUENCY CONTROL

The linear transfer function model of a generator in LFC
model, has been shown in Fig.1. The proposed method for
estimating the droop and dead-band needs the measurements
of the integral of the ACE i.e.

∫
ACE, electrical power and

speed. Typically, the ACE signal may be distributed among
multiple units in an area, based on participation factors. As
the local frequencies may not be same even in the same
control area, the local generator frequency should be used for
parameter estimation of the corresponding generator. In this
work, only one unit has been considered (pf = 1), however
multiple units may be considered with pf < 1 without any
changes in the proposed method. The

∫
ACE and the fre-

quency deviation have been taken as inputs and the mechanical
power as measured output in this estimation problem. As
the mechanical power may not be directly measurable, it is
calculated from the electrical power output and speed. The
accelerating power, obtained from the speed measurement, is
added with electrical power to get the mechanical power.

A. Modeling of governor dead-band
The governor dead-band is due to the backlash in the

linkage between servo piston and the camshaft. It occurs in
the rack and pinion used to rotate the camshaft operating
the control valves. A describing function may be used to
represent the dead-band, for studying step changes in load
or generation [18]. However, such describing functions may
not be accurate to study ambient continuous load changes,
as the describing function output depends on the magnitude
and frequency of the sinusoid input. Therefore, the governor
dead-band has been represented here as a backlash function.
The difficulty in estimating the dead-band width is that it is
highly nonlinear and its output depends not only on the present
input but also on the past output. Two extra variables were
introduced-past output and the mid-position of the backlash,
denoted as yd(k−1) and xd0 respectively. The width of the
deadband/backlash is d, input and output of the deadband at
kth instant are udk and ydk, respectively. The mid-position of
the dead-band is represented as xd0(Fig.1.b ).

B. Dead-band width
Generally, the governor deadband is represented as the total

magnitude of sustained frequency change within which there
should be no resulting change in the valve position. The
limiting value of dead-band is specified as 0.06% [11], [18].
If the droop (R) of the generator is 2.4 Hz/puMW and dead-
band width is 0.06%, the governor dead-band width in terms
of power is ∆f

R = (0.0006 ∗ 60)/2.4 = 0.015puMW

C. Mathematical model of the turbine-governor dynamics
The aim of this work is to estimate the droop and the

governor dead-band, and therefore the focus is on the turbine-
governor dynamics only. The input to the governor dead-band
at kth instant is given as follows.

udk = ∆Pref (k)− pf.
∫
ACE(k)− ∆f(k)

R
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Fig. 1: Representation of a generation in load frequency control

As a single unit has been considered here, the participation
factor pf is taken to be 1. As reference power Pref is obtained
from security constraint power flow studies and not changed
continuously, deviation in Pref i.e. ∆Pref is to be taken taken
as 0. Hence, udk becomes

udk = −
∫
ACE(k)− ∆f(k)

R
(1)

The output of the governor dead-band at kth instant,ydk,
depends on dead-band output at the previous time step yd(k−1)

and present input udk. The governor dead-band output can be
expressed as below.

If udk ≤ xd0 + d
2 and udk ≥ xd0 − d

2
ydk = yd(k−1)

elseif udk ≥ xd0 + d
2

ydk = udk − d
2

else if udk ≤ xd0 − d
2

ydk = u+ d
2

(2)

The governor response is generally considered to be linear, and
may be represented with a single time constant corresponding
to the servo motor used to move the valves.

˙∆Pv =
ydk −∆Pv

Tg
(3)

In compound turbines, the governor controls the steam flow
to high pressure turbines. The steam chest, the inlet piping to
the first turbine cylinder, the reheaters and the downstream
crossover piping all introduce delays between the valve
movement and change in steam flow to turbines. In this work,
the total power is distributed between the high pressure (HP)

and intermediate pressure (IP) turbines by fractions Fhp and
(1−Fhp) respectively. The HP and IP turbines are represented
with time constants Tt and Tr as

˙∆Pt =
∆Pv −∆Pt

Tt
(4)

˙∆Pr =
(1− Fhp)∆Pt −∆Pr

Tr
(5)

D. Output

Though valve positions are usually monitored in plants,
these measurements are generally not available outside the
plant. The deviation in mechanical power ∆Pm may still
be considered as an output in the estimation process, even
though it is calculated from the electrical power and speed
measurements. It may be noted that speed measurements may
be noisy and hence the effect of the measurement noise has
to be studied (results provided in Sec. VII).

Pm = 2H

(
dω

dt

)
+ Pe +D (ω − ω0)

Replacing ω with ω0 + ∆ω

Pm = 2H

(
d (∆ω)

dt

)
+ Pe +D (∆ω) (6)

In UKF output, ∆Pm can be expressed in terms of the HP
and IP turbine powers as follows

∆Pm = Fhp∆Pt + ∆Pr (7)

where H is the generator inertia, ω is the unit speed, ∆ω is the
speed deviation from nominal, Pm is the mechanical power,
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D is the damping constant and ω0 and Pm0 are the base speed
and mechanical power. The states, inputs and measurements
are

states = x = [∆Pv ∆Pt ∆Pr]

inputs = u = [

∫
ACE ∆f ] (8)

output = y = [∆Pm]

III. PARAMETER ESTIMATION USING UNSCENTED
KALMAN FILTER

Unscented Kalman filter (UKF) [19] is a recursive filter in
discrete-time domain which can model system nonlinearities
as well as the measurement and process noise efficiently [19].
Consider a nonlinear system in discrete domain as

xk = f(xk−1,uk) + qk−1

yk = h(xk) + rk (9)

where x is the state vector, y is the measurement vector, q
and r are the state and measurement Gaussian noise with zero
mean uncorrelated covariance matrices Q and R, respectively.
Functions f and h represents the system and measurement
models in terms of system states and inputs u. As droop and
governor dead-band are to be estimated, these may be treated
like states in this estimation process

states = x = [R d ∆Pv ∆Pt ∆Pr]

Step I: Initialization− The states and the covariance matrix
is initialized at time instant k=0, as

x0 = E(x0)

P0 = E
(

(x0 − x̂0) (x0 − x̂0)
T
)

(10)

where E denotes the expected value and ”” denotes estimated
value.
Step II: Sigma Points Generation− For the (n × 1) state
vector xk−1, and the corresponding covariance matrix Pk−1,
a set of (2n+1) vectors is formed, which are called sigma
points, to capture the mean and covariance of xk−1.

χ0
k−1 = xk−1

χik−1 = xk−1 +
(√

(n+ λ) Pk−1

)
i
i = 1..n (11)

χn+i
k−1 = xk−1 −

(√
(n+ λ) Pk−1

)
i
i = 1..n

where
(√

(n+ λ) Pk−1

)
i

is the ith column of the matrix(√
(n+ λ) Pk−1

)
and λ = α2 (n+ %) − n. % is chosen as

either (3− n) or 0 and α is chosen between 0.001 and 1. All
the sigma points may be written in a single (n × (2n + 1))
matrix, as

χk−1 = [xk−1..xk−1] +
√

(n+ λ)[0
√

Pk−1 −
√

Pk−1]
(12)

Step III: Kalman filter state prediction− a) The sigma
points are evaluated through the nonlinear prediction function
in order to get the propagated sigma points.

χ̂ik = f
(
χik−1,uk

)
(13)

where χik−1 is the ith column of the matrix χik−1 and the
resulting χ̂k is an n × (2n + 1) matrix. The measurements
being in discrete form, the nonlinear prediction function f is
also evaluated in discrete form.
With all measurements in discrete form, the states are pre-
dicted at kth time step from the estimated states of previous
time step using the discrete form of the state equations given
in Sec II. The time derivative of the parameters R and d are
taken as 0.

x1 (k) = x1 (k − 1) (14)

x2 (k) = x2 (k − 1) (15)

The input to the governor dead-band is

udk =

∫
ACE (k)− ∆f (k)

x1 (k − 1)
(16)

The output of the governor dead-band ydk may be calculated
from the present input udk and the past output yd(k−1), as

If udk ≤ xd0 + x2(k−1)
2 and udk ≥ xd0 − x2(k−1)

2
ydk = yd(k−1)

elseif udk ≥ xd0 + x2(k−1)
2

ydk = udk − x2(k−1)
2

else if udk ≤ xd0 − x2(k−1)
2

ydk = u+ x2(k−1)
2

(17)

Governor output ∆Pv (x3) can be calculated from output of
governor deadband ydk

x3 (k) = [ydk − x3 (k − 1)]
∆t

Tg
+ x3 (k − 1) (18)

∆Pt (x4) and ∆Pr (x5) can be calculated as follows:

x4 (k) = [x3 (k − 1)− x4 (k − 1)]
∆t

Tt
+ x4 (k − 1) (19)

x5 (k) = [(1− Fhp)x4 (k − 1)− x5 (k − 1)]
∆t

Tr
+ x5 (k − 1)

(20)
b) The predicted state mean vector x−k and the covariance

matrix P−k are computed from the propagated sigma points as

x−k =

2n∑
i=0

Wm
i χ̂

i
k (21)

P−k =

2n∑
i=0

Wc
i [
(
χ̂ik − x−k

)(
χ̂ik − x−k

)T
] + Qk−1 (22)

The weight in the above equation are calculated as follows:
Wm

0 = λ
n+λ ;Wm

i = λ
2(n+λ)

W c
0 = λ

n+λ +
(
1− α2 + β1

)
;W c

i = λ
2(n+λ)

For Gaussian distribution, β1 is set to 2 for optimal perfor-
mance.
Step IV: Kalman filter state correction− a) The predicted
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state mean vector and the covariance matrix calculated in the
previous step, are used to update the sigma points (similar to
Step II)

χ−k = [x−k ..x
−
k ] +

√
(n+ λ)[0

√
P−k−1 −

√
P−k−1] (23)

b) Measurements are predicted using the current sigma points
and the covariance matrix

Yi−k = h
(
χi−k , uk

)
(24)

c) The mean of the predicted measurements is calculated as

µk =

2n∑
i=0

Wm
i Yi−k (25)

d) Similar to the state covariance matrix in Step III, the
measurement covariance matrix and the cross covariance of
the state and measurement are estimated as

Sk =
1

2n

2n∑
i=0

Wc
i [
(
Yi−k − µk

) (
Yi−k − µk

)T
] + Rk (26)

Ck =

2n∑
i=0

Wc
i [
(
χi−k − xk

) (
Yi−k − µk

)T
] (27)

e) The filter gain Kk, the state xk, and the covariance Pk are
computed from yk, the set of measurements at time instant k.

Kk = CkSk−1 (28)

xk = x−k + Kk[yk − µk] (29)

Pk = P−k −KkSkKT
k (30)

Step V: Memorizing backlash output− The governor
dead-band, represented by a back-lash function, requires the
knowledge of the previous output of the backlash. Therefore,
after each step, using the estimated values of the states and
parameters, the backlash output has to be calculated and
stored, to be used in the UKF in the next time step.

udk = −
∫
ACE (k)− ∆f (k)

x1 (k)
(31)

If udk ≤ xd0 + x2(k)
2 and udk ≥ xd0 − x2(k)

2
ydk = yd(k−1)

else if udk ≥ xd0 + x2(k)
2

ydk = udk − x2(k)
2

xd0 = udk − x2(k)
2

else if udk ≤ xd0 − x2(k)
2

ydk = udk + x2(k)
2

xd0 = udk + x2(k)
2

end

(32)

The difference between (15) and (32) is to be noted that in
(32) the midposition of the governor dead-band is also updated
which will be used in (15) in next time step. ydk is the dead-
band output at kth instant and is stored in variable yd(k−1)to
use in the next step.

yd(k−1) = ydk (33)
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Time (hour)

-0.2

0

0.2

0.4

0.6

∆
P lo

ad
 (p

u)

Fig. 2: Daily load deviation curve. Base load is taken as the
load at the starting point of the day

UKF parameters: There are several parameters that need to be
initialized before running the estimation algorithm- Process
covariance matrix
Q = q2diag([0; 0; 1; 1; 1])
State covariance matrix
P = diag([p(1); p(2); p(3); p(4); p(5)])
Measurement covariance: R
Therefore, total seven parameters of UKF are to be initialized,
as given by
pp = [q, p(1), p(2), p(3), p(4), p(5),R]

IV. RESULTS

The proposed method was first tested on a linearized two
area power system model (similar to Fig. 1), whose parameters
are given in the appendix. As the estimation is supposed to be
done with ambient measurements, rather than any particular
disturbance, the load in area 1 of the test system was changed
continuously. The load data was taken from the daily load
curve of New York ISO [20], on 19thJune, 2016. As load
power deviation ∆Pload is used in the control, it was obtained
as the deviation from the initial load at the start of the day and
then taken as per-unit (with initial load as the base), shown in
Fig.2

A. Estimation for legacy thermal generator with larger dead-
band

Many of the legacy thermal generator have dead-band in
the range of 0.05% - 0.06%, and this has been implemented
with backlash in MATLAB Simulink. The proposed method
has been tested to estimate this dead-band width and droop.
Actual values of the parameters were selected as droop = 2.4
Hz/puMW and dead-band=0.015 puMW . The estimation
program took almost 500s ( 8 min) of data to converge to
their actual values from initial values of 1.5 Hz/puMW and
0.01puMW , as shown in Fig.3. After running the estimation
program for one hour, the final error was −1.3% for droop
and 0.09% for dead-band width which is considerably small
for all practical purposes. The parameters for UKF were set
at
pp = [10−6 10−3 10−7 1 1 10−6]
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Fig. 3: Estimation of parameters for old thermal generators
with larger deadband

B. Performance on actual nonlinear model

The proposed method was tested on Kundur’s two area
test system [12]. Description of the turbine governor is given
below,

i)Turbine has been modelled as tandem compound, as this
is large in number in the industry.

ii)Presently available professional simulations tools repre-
senting the governor turbine models in detail (like PSS/E-
TGOV5 model), have the options to include deadband in fre-
quency measurement, but not the governor deadband. During
simulation in this paper, intentional frequency dead-band was
put to zero and unintentional dead-band is zero (as there is no
option to include it). Therefore, the estimated governor dead-
band should converge to 0 in this case.

iii) the single mass model was considered, the dynamics
under consideration is very slow as compared to torsional
dynamics.

iv)boiler pressure was considered as constant, as the esti-
mation was done with ambient data, not big disturbance.

As measurements were taken from the generator inputs
and outputs, the performance of the method is independent
of the rest of the system. A load of 1% of the generator
rating (900 MVA) was switched on and off every 50s. The
mechanical power was calculated as given in Sec-II. The
calculated mechanical power matched the actual mechanical
power well as shown in Fig.4 except the small error caused
by electrical transients just after the load change.

Estimation of droop and dead-band width - With initial
values for the droop and the dead-band width selected to be
10% and 0.005puMW , the estimation algorithm was run for
500s. The droop estimate settled to 4.82% against an actual
droop of 5% (error -3.6%). As there was no dead-band in
the governor model, the estimated governor dead-band was
estimated to be almost zero i.e. 1.23∗10−6, as shown in Fig.5.
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Fig. 5: Estimation of parameters for fully nonlinear ther-
mal generator with zero deadband (taken from MATLAB
Simulink)

The set parameters in the UKF were

pp = [10−6, 10−4, 10−7, 1, 1, 1]

V. COMPARISON WITH RECURSIVE LEAST SQUARE

The performance of the proposed method was compared
with the recursive least square technique (RLS) proposed in [7]
and summarized in Table I.

It can be concluded from the comparison that UKF can
be more accurate in presence of non-linearities although with
higher data frequency requirements. The parameters were also
estimated using nonlinear least square technique (fmincon in
MATLAB) and the method was inaccurate with measurement
noise. The results have not been included because of space
constraints.
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TABLE I: Comparison between proposed method and RLS [7]
− [10]

Feature UKF RLS
Objective Estimates droop and

governor dead-band
width of individual
generator

Estimates area frequency char-
acteristic β, which can be ap-
proximated as droop. Gener-
ally droop is close to 95% of
β

Data
used

PMU data of
generator buses,
tie line power flow
and

∫
ACE signal

sent to generator as
per the participation
factor.

SCADA measurements for
Pg , Ptie, Pload,∆f etc.

Data
fre-
quency

30-120 Hz Once in 2 or 3 seconds

Estimation
Error

Error in droop es-
timation was 3.73%
when deadband was
also considered un-
known.

Error in estimated β (primary
frequency characteristic) was
around
a)2% without considering
deadband and
b)41% with deadband
included in simulation.

Possible
Difficul-
ties

a) Mechanical power
estimation. As
mechanical power
is generally not
measured, it has to be
estimated/calculated
and that may be
erroneous.
b)availability of
reliable generator
PMU data.

a) RLS can’t handle nonlinear-
ities like deadband and GRC.
Therefore, accuracy drops to a
very low value with nonlinear-
ities.
b)SCADA data is very often
not accurate, and state estima-
tion is run less frequently (typ-
ically in 5s interval).
c)Measured load power is not
the Pload used in load fre-
quency control, rather it is
Pload × (1 −D∆f). The ac-
curate measurement of Pload

is difficult to obtain.
d)In a large control area, the
local frequency is not same at
different buses. Considering a
single frequency for an entire
area may cause error in prac-
tice, especially when the gen-
erators in a control area are not
fully coherent.

Utility a) Adaptive frequency
bias setting
b) Estimating droop
of each generator, can
be considered parallel
for calculating droop
of the entire area.

a) Adaptive frequency bias set-
ting
b) Estimating primary fre-
quency reserve and droop
available.

VI. UTILITY

A. Adaptive Tuning of Frequency Bias Setting

Frequency bias is generally set as per different performance
indices for different frequency biases for step changes in load.
Impact of bias setting on the performance of the LFC system
for continuous load changes is more important, rather than
rare events. A continuous load change was applied to area 1
as shown in Fig.2 and the following indices were calculated
for 1 hour period and shown in Fig.6.
RMS Control Effort = ∆Effortrms =√
T∫
0

(ud−Pload)2dt

T , RMS ∆Ptie = ∆Ptierms =

0.6 0.8 1 1.2 1.4 1.6
k            

[10B=k.(1/R)]

0

2

4

6

8

Er
ro

rs

×10-3

∆f
rms

∆Effort
rms

∆Ptie
rms

Fig. 6: Errors in control effort,tie line power deviation and-
frequency error for different values of frequency bias constant
(10B). 10B has been expressed as 1

R multiplied and k varies
from 0.5 to 1.6

√
T∫
0

∆Ptie2dt

T , RMS ∆f = ∆frms =

√
T∫
0

∆f2dt

T
For an ideal load (of same area) tracking performance, the

values all these indices should tend to zero. If there was no
governor dead-band (as considered in [7]), then the frequency
bias 10B could be set equal to β = 1

R +D ≈ 1
R .In presence

of dead-band, the value of β obtained from RLS was close
to 60% of the actual β [7]. It was found that frequency bias
constant should be set to β without governor dead-band [7]
and lesser than β with governor dead-band. It can be seen
from Fig.6 that the tie line power and control effort remains
almost the same for different values of frequency bias, but the
frequency deviation is minimum when frequency bias 10B is
equal to (1.3× 1

R ) which differs from the optimum frequency
bias obtained for step change in load [7], [12]. As this setting is
not universal and varies with governor dead-band width, droop
and so on, these parameters should be accurately monitored.

B. Estimating Primary Frequency Reserve Requirement

Generally, all generators have intentional and unintentional
dead-bands, but the dead-bands are usually not considered
while studying frequency disturbances. However, both inten-
tional and unintentional dead-band have significant impacts
on the PFR of the system. For instance, the Eastern In-
terconnection has an average area frequency response char-
acteristic β of 2363MW/0.1Hz. A typical dead-band of
0.06% i.e. 36mHz amounts to 851 MW. Therefore, in a
pessimistic case, generation loss of up to 851 MW will not
cause any primary frequency response because of presence
of deadband. In that case, the responsibility of correcting the
system frequency would ultimately rest with the slow-acting
secondary frequency controllers and thus frequency response
would deteriorate [2].

VII. IMPACT OF MEASUREMENT NOISE ON ESTIMATION

The mechanical power has been calculated from the elec-
trical power and speed measurements (eq.(6)). However, the
generator speed measurement can be noisy and inaccurate.
Therefore, mechanical power was calculated using measured
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TABLE II: Noise Level Vs Estimation Error

Noise Level in speed Estimation Error(Actual R=2.4,d=0.015)
1% Estimated: R=2.382, 0.015

SNR=40.01db Error% =0.7576, -0.0692
5% Estimated: R=2.386, 0.015

SNR=25.99db Error% =0.5677, -0.0655
10% Estimated: R=2.385, 0.015

SNR=25.99db Error% =0.6169, -0.0827

speed deviation added with 10% random noise (Fig.7b). The
noise level in the speed signal was varied, and the error in the
estimated parameters were found to be below 1% (TableII).

VIII. IMPACT OF GRC ON ESTIMATION

The presence of generation rate constraint (GRC) may affect
the estimation accuracy. The rate of change of generator
power is limited because of turbine and boiler response rate
constraints. For thermal generators, it may be taken as 10%
per minute (i.e. 0.0017 pu/s). GRC has been modeled as an
open loop model [21] , as shown in Fig.8.

The mechanical power without considering the GRC, may
be calculated as:

˙∆P ′m = Fhp∆Pt + ∆Pr (34)

Suppose the maximum rate at which generator power can
increase or decrease are +r and −r. Mathematically, the GRC
is represented as:

If ˙∆P ′m > +r
˙∆P ′m = +r

else if ˙∆P ′m < −r
˙∆P ′m = −r

else
˙∆P ′m = ˙∆P ′m

(35)

If ∆Pm(k) and ∆Pm(k−1) are the mechanical power at kth

instant and (k − 1)th instant

∆Pm(k) = ∆Pm(k−1) + ˙∆P ′m∆t (36)

The dynamic equations for the rest of the system will remain
same as explained in Sec. III.

Changes in UKF Implementation: As GRC is a design
parameter, it would be known to the system operator and
cannot be changed during daily operation. Accordingly, the
GRC was included as a known parameter during estimation.
As GRC has been modeled after the turbine-governor blocks,
the state equations corresponding to the turbine-governor re-
main unchanged. However, it affects the net mechanical power,
which has been considered as an output in the UKF. Therefore,
the output equations in Sec II (eqn.(7)) and Sec III (eqn. 24)
will change and the mechanical power has to be modified as
in (36). Just like governor deadband, the GRC also depends
on the past output (mechanical power at previous instant), and
therefore just like step V, Sec. III, the ∆Pm(k) has to be stored
for using as ∆Pm(k−1) in the next time step.

The efficiency of the estimation algorithm in the presence
of GRC was tested, and the results are shown in Fig.9. At time
500s, 0.5% load was switched on which resulted in a rapid rise
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(a) Actual speed deviation and noisy speed signal
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(d) Droop and deadband estimated with UKF

Fig. 7: Impact of measurement noise on estimation perfor-
mance

in
∫
ACE sent to the generator from the control centre. The

rate of rise of mechanical power before GRC block reached
0.003pu/s (i.e. 18% per minute) while the GRC limit was
0.0017pu/s. Hence, the GRC came into action and limited
the rate of rise of generator power to 0.0017 pu/s, as shown
in Fig.9(a).

It may be observed from Fig. 9 that during the GRC opera-
tion following a transient, there is negligible error between the
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Fig. 9: Impact of GRC on estimation

estimated and actual mechanical power and the method is able
to estimate the droop and governor deadband in the presence
of GRC.

IX. BAD DATA DETECTION

There may be bad data in measurements like frequency ∆f ,
generator speed ∆ω, electrical power Pe or in updating of
generation raise/lower signal

∫
ACE. As ∆Pm is calculated

from ∆ω and ∆Pe, erroneous ∆ω and ∆Pe may affect the
mechanical power ∆Pm calculation. As ∆Pm is the only
measurement in this estimation process using UKF and no
redundant measurement available, any bad data in it may cause
failure of the entire estimation process. Therefore, any bad data
in inputs or measurement has to be detected and estimation
may be paused if needed.

A. Preprocessing of data in measurements

Generally the inputs in Kalman filter are preprocessed
(filtered) before being used for estimation. Therefore, bad
data and noise are most likely to be filtered out. However
the method should be robust to any outlier present in the
measurements, especially the inputs.

1) Preprocessing Bad Data in frequency measurement:
Maximum possible sample to sample difference in frequency
measurement is observed after a large disturbance like gen-
erator outage or tie line tripping. Considering 1% generation
change (which can be because of the biggest generator or tie
line tripping), maximum sample to sample frequency differ-
ence was 0.0006 Hz for the test system given in Appendix
(100 samples/s).

| ∆fk −∆fk−1 |≤ 0.0006Hz (37)

Considering maximum 10mHz error in frequency measure-
ment [22]- [23], in the worst case sample to sample frequency
difference becomes

| ∆fk −∆fk−1 |≤ 0.0006 + 2 ∗ 0.01Hz = 0.0206Hz (38)

If frequency measurement at kth instant deviates from the
previous measurement by more than 0.0206Hz, frequency
measurement at kth instant is discarded and replaced with
linearly extrapolated value from the previous measurements.

As frequency does not change instantaneously, most bad
data can be easily filtered out.

2) Preprocessing of Bad Data in ACE measurement:
Maximum error in

∫
ACE can be taken as the 0.05pu, as

power reference in generators is changed in small steps of
5−10MW because of GRC and other constraints. 10MW step
would be approx. 0.05pu for a 210MW generator and smaller
for bigger units. If there is any sample to sample difference in∫
ACE higher than 0.05pu, then previous data may be used.

B. Bad Data Detection Tests

Bad data in inputs or output of UKF impacts the perfor-
mance differently. There are three different tests to detect bad
data [24], as given below:

1) Test 1: Innovation magnitude test: - Considering 2σ
bound, 95% of the innovation samples (yk − µk) should lie
within ±2

√
Sk (see eqn. (26)). Innovation and normalized

innovation may be defined as:
Innovation at kth instant:νk = (yk − µk)

Normalized innovation at kth instant:ν̄k= (yk−µk)√
Sk

Therefore, 95% of the ν̄k should lie within ±2.
2) Test 2: Normalized Innovation χ2 Squared test: In-

novation sequence should have zero mean. To check the
unbiasedness, compute normalized innovation squared

ν̄2
k = νTk S

−1
k νk (39)

This ν̄2
k should be χ2 in m degree of freedom, where

m =degree of freedom. In this case, there is only one inde-
pendent measurement, hence m = 1. Thus, E(ν̄2

k) = m = 1

and the mean of ν̄2
k is ν̄av = 1

N

N∑
k=1

ν̄k
2
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Fig. 10: Bad data tests on correct (without bad data) measure-
ment

To check unbiasedness, for data length N, we need to verify
that Nν̄av lies within [r1, r2] such that probability

P (Nν̄av) ∈ [r1, r2] = 1− α (40)

If α = 0.05 and N = 1000,Nν̄av is less than the critical
value χ2

1000,0.05 with probability (1− α) or 95% confidence.
χ2

1000,0.05 can be found out from statistical table for χ2

distribution.
3) Test 3: Innovation whiteness test: Innovation ν should

be white noise unless there is any fault in the outputs or inputs.
Whiteness of the ν may be tested from autocorrelation test of
ν:

ar(τ) =
1

τ

N−τ−1∑
i=0

νkνk+τ (41)

ar(τ) has highest value at τ = 0 , hence ar is normalized
with ar(0).ar(τ) = ar(τ)

ar(0) should be randomly distributed with
mean 0, variance 1

N . Considering ±2σ bound, 95% of the
values of ar should lie within ± 2√

N
bound.

C. Results without any bad data

First, all the three tests are carried for the operating con-
dition and test system used in Sec-V, measurements without
any bad data and the results are given below in Fig.10.

0 120 320 500 700 1000

Time (s)

-0.04

-0.02

0

0.02

∆
f (

H
z)

Bad Data
Actual

Bad Data-Permananet

Bad Data-outlier

Fig. 11: Actual ∆f and ∆f corrupted with bad data. 10mHz
outlier and steady state bad data added to actual frequency at
120s and 320s

It can be seen from the Fig. 10 -(a) and (b) that the
estimated parameter values almost converged to the actual
values. From Fig. 10-c it can be seen that most of the nor-
malized innovation samples (ν̄k) lie within ±2, as discussed
in Sec IX(B). If a moving window of 1000 data samples (at
100 samples per s from PMU) is considered to check the
chi − square distribution with 95% confidence, the upper
and lower bound are obtained from the chi − square table
χ2

1000,0.025 = 1089.531 and χ2
1000,0.975 = 914.257. It means

that 1000(ν̄av) will lie within this band with 95% probability
or (ν̄av) will lie within 1.089 and 0.914. From test 2 in
Fig.10(d) it may be seen that average normalized innovation
squared (i.e. (ν̄av)) follows the chi squared distribution and
lies within a certain upper and lower band- 1.0895 and 0.9143.
Normalized autocorrelation of the innovation was calculated
for each 100s window. From Fig.10-e, it can be seen that
the autocorrelation of the innovation ar lies within ±2σ =
± 2√

N
= ± 2√

10000
= ±0.02 (total number of samples=10000,

at 100 samples/s for 100s window).

D. Estimation with Bad Data

Estimation was done in the presence of bad data in input
∆f and

∫
ACE and output ∆Pm for separate outliers and

continuous measurement errors.
1) Bad Data in ∆f : There may be two types of bad data

− temporary outlier such as single erroneous data in a large
data window and continuous errors in measurement. Bad data
was included in ∆f as shown in Fig.11

The proposed algorithm was run to estimate the parameters
in presence of the bad data and results are provided in Fig.12.
It can be seen from Fig.12 that estimation of R and d
was almost accurate until 500s and becomes poor thereafter
(Fig.12(a)&(b)), the normalized innovation magnitude ν̄k
and average normalized innovation squared ν̄av are within
their upper and lower bounds until 325s and goes beyond this
thereafter (Fig.12(c)&(d)) and the innovation is white noise
only for the first three window (0−100, 101−200, 201−300)
as the autocorrelation of the innovation lies within the upper
and lower bounds (Fig.12-e).

It may be concluded that the estimation method worked
perfectly for the single bad data at 120s but was inaccurate
during permanent measurement error from 325s till end. A
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Fig. 12: Impact of bad data in input ∆f on UKF performance
and detection of bad data

single bad data or outlier in ∆f measurement at 120s did not
cause any noticeable change in the three performance tests as
well as estimation accuracy, hence the method is robust to it.

Similar conclusion can be drawn for bad data in input∫
ACE, results not provided because of space constraints.
2) Bad Data in Pm: Bad data in ∆Pm may arise from erro-

neous ∆ω measurements or ∆Pe during transients, communi-
cation channels etc. A single outlier bad data and permanent
bad data was added to the ∆Pm measurement at 120s and
320s respectively before using in UKF, as shown in Fig.13.

The proposed algorithm was run to estimate the parameters
in presence of the bad data in ∆Pm. Detection of Bad data
was also done as shown in Fig.14.

It can be seen from that estimation of R and d was almost
accurate until 320s and becomes poor thereafter (Fig.14-
a&b), the normalized innovation magnitude (ν̄k) and average
normalized innovation squared ν̄av are within their bounds
until 320s (Fig.14(c)&(d)) and the innovation is white noise
for only the first three window (0-100, 101-200, 201-300).

Unlike bad data in input ∆f , even a single outlier bad
data in ∆Pm can be detected from the innovation magnitude
test, as shown in Fig.14(c) at t=120s. As per 2σ confidence
level, 95% of normalized innovation samples should lie within
±2. Therefore a threshold of slightly higher value than +2 or
slightly lower than −2 can be chosen. A threshold bound of
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±3 was chosen, any normalized innovation sample beyond that
zone may be considered as bad data and updating of states,
covariance matrices are paused and a warning is issued.

X. CONCLUSION

This paper presents a method for accurate estimation of the
parameters related to primary frequency control namely gov-
ernor droop and dead-band. As the method relies on ambient
data of continuous system load changes, it may be applied
online and does not require data from large disturbances
which are rare. The UKF was used for estimation as the
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system is non-linear because of the presence of governor dead-
band and UKF can handle non-linearity efficiently with small
computational burden.

The performance of the method was tested for generators
with GRC, and found to be satisfactory. It has also been shown
that the method is robust to single outlier bad data in inputs ∆f
and

∫
ACE and also output ∆Pm. In case of any outlier bad

data in ∆Pm, it can be detected from innovation magnitude
test and hence estimation may be paused and updating of states
and covariance matrices is also paused. However, the accuracy
of the method is affected in presence of any permanent bad
data or steady state error in measurements, but the bad data
can be detected with three tests on innovation.

Continuous parameter estimation will help setting the fre-
quency bias in secondary frequency control and optimizing
primary frequency reserve.

APPENDIX A
TEST SYSTEM DATA

Kp = 120 Hz/puMW Tp = 20 s
R = 2.4 Hz/puMW Tt = 0.3 s
B = 0.425 puMW/Hz Tr = 10 s
d = 0.015 puMW Fhp = 0.5

2 × π × T12 = 0.545 puMW Tg = 0.08 s
pfi = 1 Ki = 0.05

AGC Delay=5s -
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