13 research outputs found

    A Survey on MRI Brain Image Segmentation Technique

    Full text link
    One of the most dangerous disease occurring these days i.e. brain tumor can be detected by MRI images. Biomedical imaging and medical image processing that plays a vital role for MRI images has now become the most challenging field in engineering and technology. A detailed information about the anatomy can be showed through MRI images, that helps in monitoring the disease and is beneficial for the diagnosis as it consists of a high tissue contrast and have fewer artifacts. For tracking the disease and to proceed its treatment, MRI images plays a key role. It is having several advantages over other imaging techniques and is an important step for post-processing of medical images. However, having a large amount of data for manual analysis can sometimes proved to be an obstacle in the way of its effective use. In this paper, the introduction of image processing and the details of image segmentation techniques such as image preprocessing, feature extraction, image enhancement and classification of tumor processes, and how image segmentation can be applied to all Other available imaging modalities that are different from one another. This paper provides the survey on various methods used for image segmentation that have been applied for MRI images, that detects the tumor by segmenting the brain images into constituent parts. Also the advantages and disadvantages of Image segmentation is discussed using the various approaches of image segmentation of MRI brain images

    Tick hemocytes have a pleiotropic role in microbial infection and arthropod fitness

    No full text
    Abstract Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods

    GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction

    No full text
    Epileptic encephalopathies are severe brain disorders with the epileptic component contributing to the worsening of cognitive and behavioral manifestations. Acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and continuous spike and waves during slow-wave sleep syndrome (CSWSS) represent rare and closely related childhood focal epileptic encephalopathies of unknown etiology. They show electroclinical overlap with rolandic epilepsy (the most frequent childhood focal epilepsy) and can be viewed as different clinical expressions of a single pathological entity situated at the crossroads of epileptic, speech, language, cognitive and behavioral disorders. Here we demonstrate that about 20% of cases of LKS, CSWSS and electroclinically atypical rolandic epilepsy often associated with speech impairment can have a genetic origin sustained by de novo or inherited mutations in the GRIN2A gene (encoding the N-methyl-D-aspartate (NMDA) glutamate receptor α2 subunit, GluN2A). The identification of GRIN2A as a major gene for these epileptic encephalopathies provides crucial insights into the underlying pathophysiology. © 2013 Nature America, Inc. All rights reserved
    corecore