39 research outputs found

    Exchange interactions and Curie temperature in (GaMn)As

    Full text link
    We use supercell and frozen-magnon approaches to study the dependence of the magnetic interactions in (Ga,Mn)As on the Mn concentration. We report the parameters of the exchange interaction between Mn spins and the estimates of the Curie temperature within the mean-field and random-phase approximations. In agreement with experiment we obtain a nonmonotonous dependence of the Curie temperature on the Mn concentration. We estimate the dependence of the Curie temperature on the concentration of the carries in the system and show that the decrease of the number of holes in the valence band leads to fast decrease of the Curie temperature. We show that the hole states of the valence band are more efficient in mediating the exchange interaction between Mn spins than the electron states of the conduction band

    Electronic structure, exchange interactions and Curie temperature in diluted III-V magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As

    Full text link
    We complete our earlier (Phys. Rev. B, {\bf 66}, 134435 (2002)) study of the electronic structure, exchange interactions and Curie temperature in (GaMn)As and extend the study to two other diluted magnetic semiconductors (GaCr)As and (GaFe)As. Four concentrations of the 3d impurities are studied: 25%, 12.5%, 6.25%, 3.125%. (GaCr)As and (GaMn)As are found to possess a number of similar features. Both are semi-metallic and ferromagnetic, with similar properties of the interatomic exchange interactions and the same scale of the Curie temperature. In both systems the presence of the charge carriers is crucial for establishing the ferromagnetic order. An important difference between two systems is in the character of the dependence on the variation of the number of carriers. The ferromagnetism in (GaMn)As is found to be very sensitive to the presence of the donor defects, like AsGa_{\rm Ga} antisites. On the other hand, the Curie temperature of (GaCr)As depends rather weakly on the presence of this type of defects but decreases strongly with decreasing number of electrons. We find the exchange interactions between 3d atoms that make a major contribution into the ferromagnetism of (GaCr)As and (GaMn)As and propose an exchange path responsible for these interactions. The properties of (GaFe)As are found to differ crucially from the properties of (GaCr)As and (GaMn)As. (GaFe)As does not show a trend to ferromagnetism and is not half-metallic that makes this system unsuitable for the use in spintronic semiconductor devices

    Composite excitation of Josephson phase and spin waves in Josephson junctions with ferromagnetic insulator

    Full text link
    Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI are calculated by combining Maxwell and Landau-Lifshitz-Gilbert equations. In the S/FI/S junction, it is found that the current-voltage (I-V) characteristic shows two resonant peaks. Voltages at the resonant peaks are obtained as a function of the normal modes of EM field, which indicates a composite excitation of the EM field and spin-waves in the S/FI/S junction. We also examine another type of junction, in which a nonmagnetic insulator (I) is located at one of interfaces between S and FI. In such a S/I/FI/S junction, three resonant peaks appear in the I-V curve, since the Josephson-phase couples to the EM field in the I layer.Comment: 16 pages, 5 figure

    Exchange coupling in Eu monochalcogenides from first principles

    Full text link
    Using a density functional method with explicit account for strong Coulomb repulsion within the 4f shell, we calculate effective exchange parameters and the corresponding ordering temperatures of the (ferro)magnetic insulating Eu monochalcogenides (EuX; X=O,S,Se,Te) at ambient and elevated pressure conditions. Our results provide quantitative account of the many-fold increase of the Curie temperatures with applied pressure and reproduce well the enhancement of the tendency toward ferromagnetic ordering across the series from telluride to oxide, including the crossover from antiferromagnetic to ferromagnetic ordering under pressure in EuTe and EuSe. The first and second neighbor effective exchange are shown to follow different functional dependencies. Finally, model calculations indicate a significant contribution of virtual processes involving the unoccupied f states to the effective exchange.Comment: 4 pages, 6 figure

    The Kondo effect in ferromagnetic atomic contacts

    Get PDF
    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the ss and pp electrons, whereas the magnetic moments are mostly in the narrow dd-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system;this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent lognormal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.Comment: 7 pages, 5 figure

    The onset of magnetic order in fcc-Fe films on Cu(100)

    Full text link
    On the basis of a first-principles electronic structure theory of finite temperature metallic magnetism in layered materials, we investigate the onset of magnetic order in thin (2-8 layers) fcc-Fe films on Cu(100) substrates. The nature of this ordering is altered when the systems are capped with copper. Indeed we find an oscillatory dependence of the Curie temperatures as a function of Cu-cap thickness, in excellent agreement with experimental data. The thermally induced spin-fluctuations are treated within a mean-field disordered local moment (DLM) picture and give rise to layer-dependent `local exchange splittings' in the electronic structure even in the paramagnetic phase. These features determine the magnetic intra- and interlayer interactions which are strongly influenced by the presence and extent of the Cu cap.Comment: 13 pages, 3 figure

    First-Principles Dynamical Coherent-Potential Approximation Approach to the Ferromagnetism of Fe, Co, and Ni

    Full text link
    Magnetic properties of Fe, Co, and Ni at finite temperatures have been investigated on the basis of the first-principles dynamical CPA (Coherent Potential Approximation) combined with the LDA (Local Density Approximation) + UU Hamiltonian in the Tight-Binding Linear Muffintin Orbital (TB-LMTO) representation. The Hamiltonian includes the transverse spin fluctuation terms. Numerical calculations have been performed within the harmonic approximation with 4th-order dynamical corrections. Calculated single-particle densities of states in the ferromagnetic state indicate that the dynamical effects reduce the exchange splitting, suppress the band width of the quasi-particle state, and causes incoherent excitations corresponding the 6 eV satellites. Results of the magnetization vs temperature curves, paramagnetic spin susceptibilities, and the amplitudes of local moments are presented. Calculated Curie temperatures (TCT_{\rm C}) are reported to be 1930K for Fe, 2550K for Co, and 620K for Ni; TCT_{\rm C} for Fe and Co are overestimated by a factor of 1.8, while TCT_{\rm C} in Ni agrees with the experimental result. Effective Bohr magneton numbers calculated from the inverse susceptibilities are 3.0 μB\mu_{\rm B} (Fe), 3.0 μB\mu_{\rm B} (Co), and 1.6 μB\mu_{\rm B} (Ni), being in agreement with the experimental ones. Overestimate of TCT_{\rm C} in Fe and Co is attributed to the neglects of the higher-order dynamical effects as well as the magnetic short range order.Comment: 10 pages, 13 figure

    Oscillatory Curie temperature of 2D-ferromagnets

    No full text
    corecore