309 research outputs found

    Survey of semi-regular multiresolution models for interactive terrain rendering

    Get PDF
    Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accurac

    Enhanced Reconstruction of Architectural Wall Surfaces for 3D Building Models

    Full text link
    The reconstruction of architectural structures from 3D building models is a challenging task and a lot of research has been done in recent years. However, most of this work is focused mainly on reconstructing accurately the architectural shape of interiors rather than the fine architectural details, such as the wall elements (e.g. windows and doors). We focus specifically on this problem and propose a method that extends current solutions to reconstruct accurately severely occluded wall surfaces

    Cached Geometry Manager for View-dependent LOD Rendering

    Full text link
    The new generation of commodity graphics cards with significant on-board video memory has become widely popular and provides high-performance rendering and flexibility. One of the features to be exploited with this hardware is the use of the on-board video memory to store geometry information. This strategy significantly reduces the data transfer overhead from sending geometry data over the (AGP) bus interface from main memory to the graphics card. However, taking advantage of cached geometry is not a trivial task because the data models often exceed the memory size of the graphics card. In this paper we present a dynamic Cached Geometry Manager (CGM) to address this issue. We show how this technique improves the performance of real-time view-dependent level-of-detail (LOD) selection and rendering algorithms of large data sets. Alternative caching approaches have been analyzed over two different view-dependent progressive mesh (VDPM) frameworks: one for rendering of arbitrary manifold 3D meshes, and one for terrain visualization

    Tensor approximation in visualization and graphics

    Full text link
    In this course, we will introduce the basic concepts of tensor approximation (TA) – a higher-order generalization of the SVD and PCA methods – as well as its applications to visual data representation, analysis and visualization, and bring the TA framework closer to visualization and computer graphics researchers and practitioners. The course will cover the theoretical background of TA methods, their properties and how to compute them, as well as practical applications of TA methods in visualization and computer graphics contexts. In a first theoretical part, the attendees will be instructed on the necessary mathematical background of TA methods to learn the basics skills of using and applying these new tools in the context of the representation of large multidimensional visual data. Specific and very noteworthy features of the TA framework are highlighted which can effectively be exploited for spatio-temporal multidimensional data representation and visualization purposes. In two application oriented sessions, compact TA data representation in scientific visualization and computer graphics as well as decomposition and reconstruction algorithms will be demonstrated. At the end of the course, the participants will have a good basic knowledge of TA methods along with a practical understanding of its potential application in visualization and graphics related projects

    Dictionary Learning-based Inpainting on Triangular Meshes

    Full text link
    The problem of inpainting consists of filling missing or damaged regions in images and videos in such a way that the filling pattern does not produce artifacts that deviate from the original data. In addition to restoring the missing data, the inpainting technique can also be used to remove undesired objects. In this work, we address the problem of inpainting on surfaces through a new method based on dictionary learning and sparse coding. Our method learns the dictionary through the subdivision of the mesh into patches and rebuilds the mesh via a method of reconstruction inspired by the Non-local Means method on the computed sparse codes. One of the advantages of our method is that it is capable of filling the missing regions and simultaneously removes noise and enhances important features of the mesh. Moreover, the inpainting result is globally coherent as the representation based on the dictionaries captures all the geometric information in the transformed domain. We present two variations of the method: a direct one, in which the model is reconstructed and restored directly from the representation in the transformed domain and a second one, adaptive, in which the missing regions are recreated iteratively through the successive propagation of the sparse code computed in the hole boundaries, which guides the local reconstructions. The second method produces better results for large regions because the sparse codes of the patches are adapted according to the sparse codes of the boundary patches. Finally, we present and analyze experimental results that demonstrate the performance of our method compared to the literature
    • …
    corecore