56 research outputs found

    An ensemble of online estimation methods for one degree-of-freedom models of unmanned surface vehicles: applied theory and preliminary field results with eight vehicles

    Full text link
    In this paper we report an experimental evaluation of three popular methods for online system identification of unmanned surface vehicles (USVs) which were implemented as an ensemble: certifiably stable shallow recurrent neural network (RNN), adaptive identification (AID), and recursive least squares (RLS). The algorithms were deployed on eight USVs for a total of 30 hours of online estimation. During online training the loss function for the RNN was augmented to include a cost for violating a sufficient condition for the RNN to be stable in the sense of contraction stability. Additionally we described an efficient method to calculate the equilibrium points of the RNN and classify the associated stability properties about these points. We found the AID method had lowest mean absolute error in the online prediction setting, but a weighted ensemble had lower error in offline processing.Comment: v1) 8 Pages, 5 Figures, To appear at 2023 RSJ/IEEE Conference on Intelligent Robotics and Systems (IROS) in Detroit, Michigan, USA, v2) corrected error in reference

    Adaptive and Collaborative Bathymetric Channel-Finding Approach for Multiple Autonomous Marine Vehicle

    Full text link
    This paper reports an investigation into the problem of rapid identification of a channel that crosses a body of water using one or more Unmanned Surface Vehicles (USV). A new algorithm called Proposal Based Adaptive Channel Search (PBACS) is presented as a potential solution that improves upon current methods. The empirical performance of PBACS is compared to lawnmower surveying and to Markov decision process (MDP) planning with two state-of-the-art reward functions: Upper Confidence Bound (UCB) and Maximum Value Information (MVI). The performance of each method is evaluated through comparison of the time it takes to identify a continuous channel through an area, using one, two, three, or four USVs. The performance of each method is compared across ten simulated bathymetry scenarios and one field area, each with different channel layouts. The results from simulations and field trials indicate that on average multi-vehicle PBACS outperforms lawnmower, UCB, and MVI based methods, especially when at least three vehicles are used.Comment: (v1) Submitted to IEEE International Conference on Robotics and Automation (ICRA) 202

    Online Data-Driven Safety Certification for Systems Subject to Unknown Disturbances

    Full text link
    Deploying autonomous systems in safety critical settings necessitates methods to verify their safety properties. This is challenging because real-world systems may be subject to disturbances that affect their performance, but are unknown a priori. This work develops a safety-verification strategy wherein data is collected online and incorporated into a reachability analysis approach to check in real-time that the system avoids dangerous regions of the state space. Specifically, we employ an optimization-based moving horizon estimator (MHE) to characterize the disturbance affecting the system, which is incorporated into an online reachability calculation. Reachable sets are calculated using a computational graph analysis tool to predict the possible future states of the system and verify that they satisfy safety constraints. We include theoretical arguments proving our approach generates reachable sets that bound the future states of the system, as well as numerical results demonstrating how it can be used for safety verification. Finally, we present results from hardware experiments demonstrating our approach's ability to perform online reachability calculations for an unmanned surface vehicle subject to currents and actuator failures.Comment: 6 pages, 7 figure

    Enhanced Bioactivity of silybin B methylation Products

    Get PDF
    Abstract: Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity. Graphical Abstract

    De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus

    Get PDF
    Starfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species. In this study, we have assembled a transcriptome for this species from the oocytes, eggs, zygotes, and early embryos, which are known to have the highest RNA sequence complexity. Annotation of the transcriptome identified over 32,000 transcripts including the ones that encode 13 distinct cyclins and as many cyclin-dependent kinases (CDK), as well as the expected components of intracellular Ca2+ signaling toolkit. Although the mRNAs of cyclin and CDK families did not undergo significant abundance changes through the stages from oocyte to early embryo, as judged by real-time PCR, the transcript encoding Mos, a negative regulator of mitotic cell cycle, was drastically reduced during the period of rapid cleavages. Molecular phylogenetic analysis using the homologous amino acid sequences of cytochrome oxidase subunit I from A. aranciacus and 30 other starfish species indicated that Paxillosida, to which A. aranciacus belongs, is not likely to be the most basal order in Asteroidea. Taken together, the first transcriptome we assembled in this species is expected to enable us to perform comparative studies and to design gene-specific molecular tools with which to tackle long-standing biological questions

    SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87

    Get PDF
    Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images

    Identification of a cranberry juice product that inhibits enteric CYP3A-mediated first-pass metabolism in humans. Drug Metab. Dispos

    No full text
    ABSTRACT: An in vivo study in rats showed a cranberry juice product to inhibit the intestinal first-pass metabolism of the CYP3A substrate nifedipine. However, a clinical study involving the CYP3A probe substrate midazolam and a different cranberry juice product showed no interaction. Because the composition of bioactive components in natural products can vary substantially, a systematic in vitro-in vivo approach was taken to identify a cranberry juice capable of inhibiting enteric CYP3A in humans. First, the effects of five cranberry juices, coded A through E, were evaluated on midazolam 1-hydroxylation activity in human intestinal microsomes. Juice E was the most potent, ablating activity at 0.5% juice (v/v) relative to control. Second, juice E was fractionated to generate hexane-, chloroform-, butanol-, and aqueous-soluble fractions. The hexaneand chloroform-soluble fractions at 50 g/ml were the most potent, inhibiting by 77 and 63%, respectively, suggesting that the CYP3A inhibitors reside largely in these more lipophilic fractions. Finally, juice E was evaluated on the oral pharmacokinetics of midazolam in 16 healthy volunteers. Relative to water, juice E significantly increased the geometric mean area under the curve (AUC) 0-ؕ of midazolam by ϳ30% (p ‫؍‬ 0.001), decreased the geometric mean 1-hydroxymidazolam/midazolam AUC 0-ؕ ratio by ϳ40% (p < 0.001), and had no effect on geometric mean terminal half-life, indicating inhibition of enteric, but not hepatic, CYP3A-mediated first-pass metabolism of midazolam. This approach both showed a potential drug interaction liability with cranberry juice and substantiated that rigorous in vitro characterization of dietary substances is required before initiation of clinical drug-diet interaction studies

    Identification of a Cranberry Juice Product that Inhibits Enteric CYP3A-Mediated First-Pass Metabolism in Humans

    No full text
    An in vivo study in rats showed a cranberry juice product to inhibit the intestinal first-pass metabolism of the CYP3A substrate nifedipine. However, a clinical study involving the CYP3A probe substrate midazolam and a different cranberry juice product showed no interaction. Because the composition of bioactive components in natural products can vary substantially, a systematic in vitro-in vivo approach was taken to identify a cranberry juice capable of inhibiting enteric CYP3A in humans. First, the effects of five cranberry juices, coded A through E, were evaluated on midazolam 1′-hydroxylation activity in human intestinal microsomes. Juice E was the most potent, ablating activity at 0.5% juice (v/v) relative to control. Second, juice E was fractionated to generate hexane-, chloroform-, butanol-, and aqueous-soluble fractions. The hexane- and chloroform-soluble fractions at 50 μg/ml were the most potent, inhibiting by 77 and 63%, respectively, suggesting that the CYP3A inhibitors reside largely in these more lipophilic fractions. Finally, juice E was evaluated on the oral pharmacokinetics of midazolam in 16 healthy volunteers. Relative to water, juice E significantly increased the geometric mean area under the curve (AUC)0-∞ of midazolam by ∼30% (p = 0.001), decreased the geometric mean 1′-hydroxymidazolam/midazolam AUC0-∞ ratio by ∼40% (p < 0.001), and had no effect on geometric mean terminal half-life, indicating inhibition of enteric, but not hepatic, CYP3A-mediated first-pass metabolism of midazolam. This approach both showed a potential drug interaction liability with cranberry juice and substantiated that rigorous in vitro characterization of dietary substances is required before initiation of clinical drug-diet interaction studies

    Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean

    Get PDF
    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of &gt;250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance &gt;700 individuals m?2), followed by a peltospiroid gastropod (&gt;1,500 individuals m?2), eolepadid barnacle (&gt;1,500 individuals m?2), and carnivorous actinostolid anemone (&gt;30 individuals m?2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in ?34S values of primary consumers with distance from vent sources, and variation in their ?13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents

    Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (<i>Camellia sinensis</i>) as a Case Study

    No full text
    A challenge that must be addressed when conducting studies with complex natural products is how to evaluate their complexity and variability. Traditional methods of quantifying a single or a small range of metabolites may not capture the full chemical complexity of multiple samples. Different metabolomics approaches were evaluated to discern how they facilitated comparison of the chemical composition of commercial green tea [<i>Camellia sinensis</i> (L.) Kuntze] products, with the goal of capturing the variability of commercially used products and selecting representative products for in vitro or clinical evaluation. Three metabolomic-related methodsuntargeted ultraperformance liquid chromatography–mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted, quantitative <sup>1</sup>HNMRwere employed to characterize 34 commercially available green tea samples. Of these methods, untargeted UPLC-MS was most effective at discriminating between green tea, green tea supplement, and non-green-tea products. A method using reproduced correlation coefficients calculated from principal component analysis models was developed to quantitatively compare differences among samples. The obtained results demonstrated the utility of metabolomics employing UPLC-MS data for evaluating similarities and differences between complex botanical products
    corecore