84 research outputs found
A life course perspective on social and family formation transitions to adulthood of young men and women in Mexico
This research examines the trajectories that young men and women in Mexico
experienced during their transition to adulthood in the 1980s and 1990s. The study,
particularly, considers two groups of significant markers of adulthood: social
transitions (leaving education, entry into the labour force, parental home leaving), and
family formation transitions (first sex, first partnership, and first birth). The thesis
investigates the ways that these transitions were experienced among Mexican youth:
first, by establishing the main interactions between social transitions and family
formation transitions to adulthood; and second, by providing evidence of the main
trajectories followed by young men and women in their passage to adulthood from a
life course perspective.
Applying Event History techniques to retrospective data from the 2000
Mexican National Youth Survey, results show that young men and women
experienced different patterns of trajectories in their transit to adulthood marked by a
strong gender component. While young men showed a lag between the experience of
social and family formation transitions characterized by work-oriented trajectories,
young women often experienced almost simultaneous occurrence of social and family
formation transitions leading to predominantly family-oriented trajectories to
adulthood. Differences between urban and rural respondents were also found to be
significant.
Another conclusion of the study is that many young people found great
difficulty in obtaining their first job after leaving education, leading to high
unemployment. Despite the lack of employment opportunities for Mexican young
people, family formation transitions were not substantially postponed until later ages
unlike many developed nations. The findings also confirm the importance of
education on the experience of transitions to adulthood. The study shows the need to
restructure the Mexican educational system to enable young people to work and study
simultaneously, without having to leave education immediately after entering the
labour force. These findings highlight the need to strengthen and reinforce current
education policies to stimulate labour force participation of young women
Identification de signaux audio par appariement de chaĂźnes
Le fingerprint audio est un court résumé d'un document audio calculé à partir des propriétés du signal. Comme l'empreinte digitale humaine, le fingerprint audio permet d'identifier un document audio parmi un lot de candidats sans en déduire aucune autre caractéristique. Dans cet article, nous proposons une méthode d'extraction de fingerprint basée sur une nouvelle méthode de segmentation adaptative du signal. La combinaison d'une méthode d'appariement de chaßne avec un pré-filtrage par q-grams permet d'identifier un extrait audio inconnu et de décider si cet extrait est une version dérivée d'un fingerprint préalablement calculé et stocké ou si aucun fingerprint de la base de donnée de correspond à l'extrait d'entrée
Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages
Soil salinity imposes an agricultural and economic burden that may be alleviated by identifying the components of salinity tolerance in barley, a major crop and the most salt tolerant cereal. To improve our understanding of these components, we evaluated a diversity panel of 377 two-row spring barley cultivars during both the vegetative, in a controlled environment, and the reproductive stages, in the field. In the controlled environment, a high-throughput phenotyping platform was used to assess the growth-related traits under both control and saline conditions. In the field, the agronomic traits were measured from plots irrigated with either fresh or saline water. Association mapping for the different components of salinity tolerance enabled us to detect previously known associations, such as HvHKT1;5. Using an "interaction model", which took into account the interaction between treatment (control and salt) and genetic markers, we identified several loci associated with yield components related to salinity tolerance. We also observed that the two developmental stages did not share genetic regions associated with the components of salinity tolerance, suggesting that different mechanisms play distinct roles throughout the barley life cycle. Our association analysis revealed that genetically defined regions containing known flowering genes (Vrn-H3, Vrn-H1, and HvNAM-1) were responsive to salt stress. We identified a salt-responsive locus (7H, 128.35 cM) that was associated with grain number per ear, and suggest a gene encoding a vacuolar H+-translocating pyrophosphatase, HVP1, as a candidate. We also found a new QTL on chromosome 3H (139.22 cM), which was significant for ear number per plant, and a locus on chromosome 2H (141.87 cM), previously identified using a nested association mapping population, which associated with a yield component and interacted with salinity stress. Our study is the first to evaluate a barley diversity panel for salinity stress under both controlled and field conditions, allowing us to identify contributions from new components of salinity tolerance which could be used for marker-assisted selection when breeding for marginal and saline regions
The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance
Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of S. pimpinellifolium âLA0480.â Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. The âLA0480â genome assembly size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the âLA0480â protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in âLA0480.â Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness
Les diatomees du lac de maar du Bouchet (Massif-Central, France) : reconstruction du paleoenvironnement depuis les 120 derniers millenaires
SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
Heterochromatin as a pluripotency marker : comparison between in vivo (mammals embryos) and in vitro (stem cells) models
A la suite de la fĂ©condation, le gĂ©nome embryonnaire subit diffĂ©rents remodelages Ă©pigĂ©nĂ©tiques et structuraux, nĂ©cessaires Ă son activation. Ces diffĂ©rents remaniements se poursuivent tout au long du dĂ©veloppement, alors que lâembryon progresse de lâĂ©tat de totipotence vers la pluripotence et la diffĂ©rentiation. La pluripotence est un Ă©tat complexe et transitoire au cours duquel les cellules Ă lâorigine du futur organisme progressent dâun Ă©tat « naĂŻf » vers un Ă©tat « amorcĂ© ». L'Ă©mergence et l'Ă©volution de la pluripotence s'accompagnent notamment de changements dans la distribution de la mĂ©thylation de l'ADN et des modifications post-traductionnelles des histones. De prĂ©cĂ©dents travaux avaient mis en Ă©vidence que le profil Ă©pigĂ©nĂ©tique de lâhĂ©tĂ©rochromatine pĂ©ricentromĂ©rique permet de discriminer les cellules murines pluripotentes naĂŻves et amorcĂ©es in vitro. Notamment, H3K27me3 est retrouvĂ©e aux chromocentres des mESCs naĂŻves tandis qu'elle est absente des chromocentres des mEpiSCs amorcĂ©es. Ainsi, ce projet avait pour objectifs de (i) dĂ©crire le profil Ă©pigĂ©nĂ©tique des chromocentres au cours du dĂ©veloppement prĂ©coce murin, (ii) identifier les acteurs qui participent Ă lâapposition de H3K27me3 aux chromocentres, et (iii) dĂ©terminer si ces mĂȘmes caractĂ©ristiques Ă©pigĂ©nĂ©tiques sont conservĂ©es aux chromocentres du blastocyste bovin et/ou dans les ESCs bovines.Nous avons montrĂ© que, dans lâembryon murin, H3K27me3 sâaccumule aux chromocentres dĂšs leur formation au stade 2-cellules et y est maintenue au cours du dĂ©veloppement prĂ©-implantation. De façon intĂ©ressante, la distribution de H3K27me3 semble ĂȘtre liĂ©e Ă la maturation du lignage pluripotent puisque le profil de H3K27me3 change au moment de la sĂ©grĂ©gation de lâĂ©piblaste naĂŻf par rapport Ă l'endoderme primitif. Dans lâembryon post-implantation, H3K27me3 n'est plus prĂ©sente aux chromocentres quel que soit le lignage, y compris lâĂ©piblaste pluripotent amorcĂ©. Nous avons pu souligner des diffĂ©rences entre la situation in vivo â oĂč le profil de H3K27me3 est homogĂšne dans lâensemble des cellules de lâĂ©piblaste â et ce qui avait Ă©tĂ© dĂ©crit in vitro dans les mESCs. Enfin, il a Ă©tĂ© mis en Ă©vidence que la prĂ©sence de H3K27me3 aux chromocentres nâest pas impliquĂ©e dans le contrĂŽle transcriptionnel des sĂ©quences pĂ©ricentromĂ©riques puisque leur transcription tend Ă diminuer au cours du dĂ©veloppement, indĂ©pendamment de la prĂ©sence de H3K27me3.Cette Ă©tude sâest Ă©galement intĂ©ressĂ©e aux protĂ©ines EZH2 et BEND3, pour dĂ©terminer leurs implications respectives dans lâapposition de H3K27me3. Nous avons montrĂ© qu'EZH2 se localise en pĂ©riphĂ©rie des chromocentres dĂšs leur formation, conjointement Ă lâenrichissement progressif en H3K27me3 ; alors que BEND3 ne semble interagir avec les chromocentres quâĂ partir du stade 8-cellules â suggĂ©rant que BEND3 nâest pas lâĂ©lĂ©ment principal de recrutement dâEZH2 aux chromocentres dans lâembryon â. Ainsi, dans lâembryon prĂ©-implantation et dans les mESCs non mutantes, la prĂ©sence de BEND3 aux chromocentres nâest pas couplĂ©e Ă la prĂ©sence de H3K27me3 â contrairement aux observations faites pour EZH2 dont le changement de distribution dans lâembryon prĂ©cĂšde le changement de localisation de H3K27me3 aux chromocentres â. A lâaide dâune approche par siRNA ciblant les transcrits EZH2 ou les transcrits BEND3, il a Ă©tĂ© mis en Ă©vidence que ni la forte diminution de BEND3, ni celle dâEZH2, nâimpactent la localisation de H3K27me3 aux chromocentres ou la transcription des sĂ©quences pĂ©ricentromĂ©riques.Enfin, cette Ă©tude montre que H3K27me3 se localise en pĂ©riphĂ©rie des chromocentres du blastocyste bovin. Cependant le profil de H3K27me3 ne semble pas Ă©voluer avec la progression de lâĂ©tat de pluripotence, contrairement Ă ce qui a Ă©tĂ© dĂ©crit pour le modĂšle murin. Ces rĂ©sultats ont permis de mettre en Ă©vidence que la localisation de H3K27me3 au niveau des chromocentres semble ĂȘtre une caractĂ©ristique du dĂ©veloppement embryonnaire prĂ©coce quel que soit l'espĂšce.Following fertilization, the embryonic genome undergoes various epigenetic and structural remodelings, essential for its activation. These various changes proceed further throughout development, as the embryo progresses from totipotency to pluripotency and differentiation. Pluripotency is a complex and transient state in which the cells that will later give rise to the future organism progress from a "naĂŻve" to a "primed" state. The rise and progression of pluripotency is accompanied by changes in the distribution of DNA methylation and post-translational histones modifications. Previous work highlighted that the epigenetic profile of pericentromeric heterochromatin discriminates naive from primed murine pluripotent cells in vitro. Notably, H3K27me3, is found at the chromocenters of naive mESCs while this epigenetic mark is absent from the chromocenters of primed mEpiSCs. Thus, the objectives of this project were to (i) describe the epigenetic profile of chromocenters during early murine development, (ii) identify which actors are implied in the apposition of H3K27me3 to chromocenters, and (iii) determine whether these same epigenetic features are preserved at chromocenters of bovine blastocysts and/or in bovine ESCs.We showed that, in mouse embryo, H3K27me3 accumulates at the chromocenters from their formation at the 2-cell stage and is then maintained during pre-implantation development. Interestingly, the distribution of H3K27me3 seems to be related to the maturation of the pluripotent lineage since the profile of H3K27me3 changes upon segregation of the naive epiblast from the primitive endoderm. In the post-implantation embryo, H3K27me3 is not anymore at chromocenters whatever the lineages including the primed pluripotent epiblast. We were able to highlight important differences between the embryos in vivo - where the profile of H3K27me3 is homogeneous in all epiblast cells - and what was described in vitro in mESCs. Finally, we showed that the presence of H3K27me3 at chromocenters is not involved in the transcriptional control of pericentromeric sequences since their transcription tends to decrease during development, independently of the presence of H3K27me3.This study also focused on EZH2 and BEND3 proteins to assess their involvement in H3K27me3 apposition. We found that EZH2 localizes to the periphery of the chromocenters from their clustering, in conjunction with the progressive enrichment of H3K27me3; whereas BEND3 appears to interact with chromocenters only from the 8-cell stage onwards - suggesting that BEND3 is not the main driver of EZH2 recruitment to chromocenters in the embryo -. Similarly, in the pre-implantation embryo and in mESCs, the location of BEND3 at chromocenters does not correlate with the presence of H3K27me3 - in contrast to EZH2 whose change in distribution in the embryo precedes the change in localization of H3K27me3 at chromocenters -. Using a siRNA approach targeting either EZH2 or BEND3 transcripts, we showed that neither the strong reduction of BEND3, nor that of EZH2 influences the localization of H3K27me3 at chromocenters or the transcription of pericentromeric sequences.Finally, this study highlights that H3K27me3 is found at the chromocenters periphery in bovine blastocyst, although the profile of H3K27me3 at chromocenters seems not to evolve with the progression of pluripotency. These results highlighted similarities between species, where the localization of H3K27me3 at the chromocenters appears to be a feature of early embryonic development
- âŠ