17 research outputs found

    Comprehensive analysis of normal adjacent to tumor transcriptomes.

    Get PDF
    Histologically normal tissue adjacent to the tumor (NAT) is commonly used as a control in cancer studies. However, little is known about the transcriptomic profile of NAT, how it is influenced by the tumor, and how the profile compares with non-tumor-bearing tissues. Here, we integrate data from the Genotype-Tissue Expression project and The Cancer Genome Atlas to comprehensively analyze the transcriptomes of healthy, NAT, and tumor tissues in 6506 samples across eight tissues and corresponding tumor types. Our analysis shows that NAT presents a unique intermediate state between healthy and tumor. Differential gene expression and protein-protein interaction analyses reveal altered pathways shared among NATs across tissue types. We characterize a set of 18 genes that are specifically activated in NATs. By applying pathway and tissue composition analyses, we suggest a pan-cancer mechanism of pro-inflammatory signals from the tumor stimulates an inflammatory response in the adjacent endothelium

    Supercomputer-aided Drug Repositioning at Scale: Virtual Screening for SARS-CoV-2 Protease Inhibitor

    No full text
    Coronavirus diseases (COVID-19) outbreak has been labelled a pandemic. For the prioritization of treatments to cope with COVID-19, it is important to conduct rapid high-throughput screening of chemical compounds to repurposing the approved drugs, such as repositioning of chloroquine (Malaria drug) for COVID-19. In this study, exploiting supercomputer resource, we conducted high-throughput virtual screening for potential repositioning candidates of the protease inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the three dimensional structure of main protease (Mpro) of SARS-CoV-2, we evaluated binding affinity between Mpro and drug candidates listed in SWEETLEAD library and ChEMBL database. Docking scores of 19,168 drug molecules at the active site of Mpro were calculated using Autodock Vina package. Among the calculated result, we selected 43 drug candidates and ran molecular dynamics (MD) simulation to further investigate protein-drug interaction. Among compounds that bind to the active site of SARS-CoV-2, we finally selected the 8 drugs showing the highest binding affinity; asunaprevir, atazanavir, dasabuvir, doravirine, fosamprenavir, ritonavir, voxilaprevir and amprenavir, which are the antiviral drugs of hepatitis C virus or human immunodeficiency virus. We expect that the present study provides comprehensive insights into the development of antiviral medication, especially for the treatment of COVID-19.* Attached excel file contains a full list of results of docking calculations</div

    Comparing Ethnicity-Specific Reference Intervals for Clinical Laboratory Tests from EHR Data

    No full text
    BackgroundThe results of clinical laboratory tests are an essential component of medical decision-making. To guide interpretation, test results are returned with reference intervals defined by the range in which the central 95% of values occur in healthy individuals. Clinical laboratories often set their own reference intervals to accommodate variation in local population and instrumentation. For some tests, reference intervals change as a function of sex, age, and self-identified race and ethnicity.MethodsIn this work, we develop a novel approach, which leverages electronic health record data, to identify healthy individuals and tests for differences in laboratory test values between populations.ResultsWe found that the distributions of &gt;50% of laboratory tests with currently fixed reference intervals differ among self-identified racial and ethnic groups (SIREs) in healthy individuals.ConclusionsOur results confirm the known SIRE-specific differences in creatinine and suggest that more research needs to be done to determine the clinical implications of using one-size-fits-all reference intervals for other tests with SIRE-specific distributions
    corecore