22 research outputs found

    Coherence in dc SQUID phase qubits

    Get PDF
    I report measurements of energy relaxation and quantum coherence times in an aluminum dc SQUID phase qubit and a niobium dc SQUID phase qubit at 80 mK. In a dc SQUID phase qubit, the energy levels of one Josephson junction are used as qubit states and the rest of the SQUID forms an inductive network to isolate the qubit junction. Noise current from the SQUID's current bias leads is filtered by the network, with the amount of filtering depending on the ratio of the loop inductance to the Josephson inductance of the isolation junction. The isolation unction inductance can be tuned by adjusting the current, and this allows the isolation to be varied in situ. I quantify the isolation by the isolation factor rI which is the ratio of the current noise power in the qubit junction to the total noise current power on its bias leads. I measured the energy relaxation time T1, the spectroscopic coherence time T2* and the decay time constant T' of Rabi oscillations in the Al dc SQUID phase qubit AL1 and the Nb dc SQUID phase qubit NBG, which had a gradiometer loop. In particular, I investigated the dependence of T1 on the isolation rI . T1 from the relaxation measurements did not reveal any dependance on the isolation factor rI. For comparison, I found T1 by fitting to the thermally induced background escape rate and found that it depended on rI . However, further investigation suggests that this apparent dependence may be due to a small-noise induced population in j2i so I cannot draw any firrm conclusion. I also measured the spectroscopic coherence time T2* , Rabi oscillations and the decay constant T' at significantly different isolation factors. Again, I did not observe any dependence of T2* and T' on rI , suggesting that the main decoherence source in the qubit AL1 was not the noise from the bias current. Similar results were found previously in our group's Nb devices. I compared T1, T2* and T0 for the qubit AL1 with those for NBG and a niobium dc SQUID phase qubit NB1 and found significant differences in T2* and T' among the devices but similar T1 values. If flux noise was dominant, NBG which has a gradiometer loop would have the longest Rabi decay time T'. However, T' for NBG was similar to NB1, a Nb dc SQUID phase qubit without a gradiometer. I found that T' = 28 ns for AL1, the Al dc SQUID phase qubit, and this was more than twice as long as in NBG (T' ~ 15 ns) or NB1 (T' ~ 15 ns). This suggests that materials played an important role in determining the coherence times of the different devices. Finally, I discuss the possibility of using a Cooper pair box to produce variable coupling between phase qubits. I calculated the effective capacitance of a Cooper pair box as a function of gate voltage. I also calculated the energy levels of a Josephson phase qubit coupled to a Cooper pair box and showed that the energy levels of the phase qubit can be tuned with the coupled Cooper pair box

    Strong-field effects in the Rabi oscillations of the superconducting phase qubit

    Full text link
    Rabi oscillations have been observed in many superconducting devices, and represent prototypical logic operations for quantum bits (qubits) in a quantum computer. We use a three-level multiphoton analysis to understand the behavior of the superconducting phase qubit (current-biased Josephson junction) at high microwave drive power. Analytical and numerical results for the ac Stark shift, single-photon Rabi frequency, and two-photon Rabi frequency are compared to measurements made on a dc SQUID phase qubit with Nb/AlOx/Nb tunnel junctions. Good agreement is found between theory and experiment.Comment: 4 pages, 4 figures, accepted for publication in IEEE Trans. Appl. Supercon

    Comparison of coherence times in three dc SQUID phase qubits

    Full text link
    We report measurements of spectroscopic linewidth and Rabi oscillations in three thin-film dc SQUID phase qubits. One device had a single-turn Al loop, the second had a 6-turn Nb loop, and the third was a first order gradiometer formed from 6-turn wound and counter-wound Nb coils to provide isolation from spatially uniform flux noise. In the 6 - 7.2 GHz range, the spectroscopic coherence times for the gradiometer varied from 4 ns to 8 ns, about the same as for the other devices (4 to 10 ns). The time constant for decay of Rabi oscillations was significantly longer in the single-turn Al device (20 to 30 ns) than either of the Nb devices (10 to 15 ns). These results imply that spatially uniform flux noise is not the main source of decoherence or inhomogenous broadening in these devices.Comment: 4 pages, 5 figures, accepted for publication in IEEE Trans. Appl. Supercon

    Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED

    Full text link
    We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying \textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.Comment: 5 pages, 4 figures; includes Supporting Online Material of 6 pages with 5 figure

    Multilevel effects in the Rabi oscillations of a Josephson phase qubit

    Full text link
    We present Rabi oscillation measurements of a Nb/AlOx/Nb dc superconducting quantum interference device (SQUID) phase qubit with a 100 um^2 area junction acquired over a range of microwave drive power and frequency detuning. Given the slightly anharmonic level structure of the device, several excited states play an important role in the qubit dynamics, particularly at high power. To investigate the effects of these levels, multiphoton Rabi oscillations were monitored by measuring the tunneling escape rate of the device to the voltage state, which is particularly sensitive to excited state population. We compare the observed oscillation frequencies with a simplified model constructed from the full phase qubit Hamiltonian and also compare time-dependent escape rate measurements with a more complete density-matrix simulation. Good quantitative agreement is found between the data and simulations, allowing us to identify a shift in resonance (analogous to the ac Stark effect), a suppression of the Rabi frequency, and leakage to the higher excited states.Comment: 14 pages, 9 figures; minor corrections, updated reference
    corecore