26 research outputs found

    Business process simulation for operational decision support

    Get PDF
    Contemporary business process simulation environments are geared towards design-time analysis, rather than operational decision support over already deployed and running processes. In particular, simulation experiments in existing process simulation environments start from an empty execution state. We investigate the requirements for a process simulation environment that allows simulation experiments to start from an intermediate execution state. We propose an architecture addressing these requirements and demonstrate it through a case study conducted using the YAWL workflow engine and CPN simulation tools

    Declarative and procedural approaches for modelling clinical guidelines: Addressing flexibility issues

    No full text
    Recent analysis of clinical Computer-Interpretable Guideline (CIG) modelling languages from the perspective of the control-flow patterns has revealed limited capabilities of these languages to provide flexibility for encoding and executing clinical guidelines. The concept of flexibility is of major importance in the medical-care domain since no guarantee can be given on predicting the state of patients at the point of care. In this paper, we illustrate how the flexibility of CIG modelling languages can be improved by describing clinical guidelines using a declarative approach. We propose a CIGDec language for modelling and enacting clinical guidelines

    Linking domain models and process models for reference model configuration

    No full text
    Reference process models capture common practices in a given domain and variations thereof. Such models are intended to be configured in a specific setting, leading to individualized process models. Although the advantages of reference process models are widely accepted, their configuration still requires a high degree of modeling expertise. Thus users not only need to be domain experts, but also need to master the notation in which the reference process model is captured. In this paper we propose a framework for reference process modeling wherein the domain variability is represented separately from the actual process model. Domain variability is captured as a questionnaire that reflects the decisions that need to be made during configuration and their interrelationships. This questionnaire allows subject matter experts to configure the process model without requiring them to understand the process modeling notation. The approach guarantees that the resulting process models are correct according to certain constraints. To demonstrate the applicability of the proposal, we have implemented a questionnaire toolset that guides users through the configuration of reference process models captured in two different notations

    Trade-offs in the performance of workflows - quantifying the impact of best practices

    No full text
    Business process redesign is one of the most powerful ways to boost business performance and to improve customer satisfaction [14]. A possible approach to business process redesign is using redesign best practices. A previous study identified a set of 29 different redesign best practices [18]. However, little is known about the exact impact of these redesign best practices on workflow performance. This study proposes an approach that can be used to quantify the impact of a business process redesign project on all dimensions of workflow performance. The approach consists of a large set of performance measures and a simulation toolkit. It supports the quantification of the impact of the implementation of redesign best practices, in order to determine what best practice or combination of best practices leads to the most favorable effect in a specific business process. The approach is developed based on a quantification project for the parallel best practice [8] and is validated with two other quantification projects, namely for the knockout and triage best practices

    Molecular Weight Distribution of Two Types of Living Chains Formed during Nitroxide-Mediated Polymerization of Styrene

    No full text
    Different types of polymer chains generated during the nitroxide-mediated polymerization of styrene are separated for the first time, and their molecular weight distribution (MWD) is investigated. Living and dead chains are monitored during the reaction; specifically, two types of living chains derived from the initiation of the alkoxyamine (RT) and the self-initiation of styrene and dead chains present in the as-prepared polystyrene (PS). To distinguish between each polymer species, different numbers of hydroxyl groups are introduced onto the T and R groups of the alkoxyamine (one and two groups, respectively). Each living and dead chains is resolved according to the distinct number of hydroxyl groups on its chain-end using high-performance liquid chromatography. Molecular structures of the fractionated PS are characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy, and the results of which show two distinct initiation paths: one originating from RT and the other from the self-initiation of styrene. Molecular weight and MWD are measured using size-exclusion chromatography and reveal a narrow MWD for the living chains derived from RT. Contrastingly, a broad and skewed MWD is observed for the other living chains derived from the self-initiation of styrene and the dead chains. ? 2021 Wiley-VCH GmbH11Nsciescopu

    Adaptive workflows for healthcare information systems

    No full text
    Current challenges in Healthcare Information Systems (HIS) include supplying patients with personalized medical information, creating means for efficient information flow between different healthcare providers in order to lower risks of medical errors and increase the quality of care. To address these challenges, the information about patient-related processes, such as currently executed medical protocols, should be made available for medical staff and patients. Existing HIS are mostly data-centered, and therefore cannot provide an adequate solution. To give processes a prominent role in HIS, we apply the adaptive workflow nets framework. This framework allows both healthcare providers and patients to get an insight into the past and current processes, but also foresee possible future developments. It also ensures quality and timing of data communication essential for efficient information flow

    The need for a process mining evaluation framework in research and practice

    No full text
    Although there has been much progress in developing process mining algorithms in recent years, no effort has been put in developing a common means of assessing the quality of the models discovered by these algorithms. In this paper, we motivate the need for such an evaluation mechanism, and outline elements of an evaluation framework that is intended to enable (a) process mining researchers to compare the performance of their algorithms, and (b) end users to evaluate the validity of their process mining results

    Process mining based on clustering: A quest for precision

    No full text
    Process mining techniques attempt to extract non-trivial and useful information from event logs recorded by information systems. For example, there are many process mining techniques to automatically discover a process model based on some event log. Most of these algorithms perform well on structured processes with little disturbances. However, in reality it is difficult to determine the scope of a process and typically there are all kinds of disturbances. As a result, process mining techniques produce spaghetti-like models that are difficult to read and that attempt to merge unrelated cases. To address these problems, we use an approach where the event log is clustered iteratively such that each of the resulting clusters corresponds to a coherent set of cases that can be adequately represented by a process model. The approach allows for different clustering and process discovery algorithms. In this paper, we provide a particular clustering algorithm that avoids over-generalization and a process discovery algorithm that is much more robust than the algorithms described in literature [1]. The whole approach has been implemented in ProM
    corecore