108 research outputs found

    High density culturing of porcine hepatocytes immobilized on nonwoven polyurethane-based biomatrices

    Get PDF
    Objective: Hepatocytes are increasingly used as functional units in bioartificial liver devices. The objective of the present study was to investigate the feasibility of culturing porcine hepatocytes in high density on a novel polyurethane-based nonwoven three-dimensional matrix. We investigated (1) the optimal cell density within this culture configuration, (2) the maintenance of liver-specific morphology and cell functions over long-term periods and (3) the necessity to apply an additional extracellular matrix component (collagen gel). Methods: Nonwoven polyurethane matrices were manufactured by a specially developed fiber extrusion technology. Pig hepatocytes were cultured at various cell densities of 0.1, 0.25, 0.5, 0.75, 1 and 2 x 10(6) cells/cm(2) on three-dimensional networks of nonwoven polyurethane matrices and cell adhesion as well as functional parameters (DNA of nonattached/attached cells, lactate dehydrogenase release and cytochrome P450 activity) were determined. To assess the performance of cells within this configuration albumin and urea excretion was measured over 8 days. The potentially beneficial effect of an additional extracellular matrix configuration was evaluated by comparing the average albumin synthesis in groups of identical cell numbers. Results: The optimal cell density in this three-dimensional culture configuration was 1 x 10(6) cells/cm(2). The functional capacity of hepatocytes was stable for 8 days at an average level of 53.7 +/- 5.6 ng/h/mug DNA and of 1.8 +/- 0.14 mug/h/mug DNA for albumin and urea excretion, respectively. The supplementation of an extracellular matrix configuration did not improve functional activity of cells. Average albumin synthesis was 35.6 ng/h/mug DNA (28.7, 42.8) and 32.7 ng/h/mug DNA (23.4, 49.2) for collagen-immobilized and control cultures, respectively, Conclusion: The results of the study indicate that nonwoven polyurethane sheets supply a biocompatible support structure for functionally active high density cultures. Thus, nonwoven polyurethane matrices should be further investigated on with respect to their role in the development, optimization and design of bioartificial liver systems. Copyright (C) 2001 S.Karger AG, Basel

    Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: a validation study

    Get PDF
    Tumour angiogenesis plays a key role in tumour growth, formation of metastasis, detection and treatment of malignant tumours. Recent investigations provided increasing evidence that quantitative analysis of tumour angiogenesis is an indispensable prerequisite for developing novel treatment strategies such as anti-angiogenic and antivascular treatment options. Therefore, it was our aim to establish and validate a new and versatile imaging technique, that is orthogonal polarisation spectral™ imaging, allowing for non-invasive quantitative imaging of tumour angiogenesis in vivo. Experiments were performed in amelanotic melanoma A-MEL 3 implanted in a transparent dorsal skinfold chamber of the hamster. Starting at day 0 after tumour cell implantation, animals were treated daily with the anti-angiogenic compound SU5416 (25 mg kg bw−1) or vehicle (control) only. Functional vessel density, diameter of microvessels and red blood cell velocity were visualised by both orthogonal polarisation spectral™ imaging and fluorescence microscopy and analysed using a digital image system. The morphological and functional properties of the tumour microvasculature could be clearly identified by orthogonal polarisation spectral™ imaging. Data for functional vessel density correlated excellently with data obtained by fluroescence microscopy (y=0.99x+0.48, r2=0.97, RS=0.98, precision: 8.22 cm−1 and bias: −0.32 cm−1). Correlation parameters for diameter of microvessels and red blood cell velocity were similar (r2=0.97, RS=0.99 and r2=0.93, RS=0.94 for diameter of microvessels and red blood cell velocity, respectively). Treatment with SU5416 reduced tumour angiogenesis. At day 3 and 6 after tumour cell implantation, respectively, functional vessel density was 4.8±2.1 and 87.2±10.2 cm−1 compared to values of control animals of 66.6±10.1 and 147.4±13.2 cm−1, respectively. In addition to the inhibition of tumour angiogenesis, tumour growth and the development of metastasis was strongly reduced in SU5416 treated animals. This new approach enables non-invasive, repeated and quantitative assessment of tumour vascular network and the effects of antiangiogenic treatment on tumour vasculature in vivo. Thus, quantification of tumour angiogenesis can be used to more accurately classify and monitor tumour biologic characteristics, and to explore aggressiveness of tumours

    Discrepancy between radiological and pathological size of renal masses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor size is a critical variable in staging for renal cell carcinoma. Clinicians rely on radiological estimates of pathological tumor size to guide patient counseling regarding prognosis, choice of treatment strategy and entry into clinical trials. If there is a discrepancy between radiological and pathological measurements of renal tumor size, this could have implications for clinical practice. Our study aimed to compare the radiological size of solid renal tumors on computed tomography (CT) to the pathological size in an Australian population.</p> <p>Methods</p> <p>We identified 157 patients in the Westmead Renal Tumor Database, for whom data was available for both radiological tumor size on CT and pathological tumor size. The paired Student's <it>t</it>-test was used to compare the mean radiological tumor size and the mean pathological tumor size. Statistical significance was defined as <it>P </it>< 0.05. We also identified all cases in which post-operative down-staging or up-staging occurred due to discrepancy between radiological and pathological tumor sizes. Additionally, we examined the relationship between Fuhrman grade and radiological tumor size and pathological T stage.</p> <p>Results</p> <p>Overall, the mean radiological tumor size on CT was 58.3 mm and the mean pathological size was 55.2 mm. On average, CT overestimated pathological size by 3.1 mm (<it>P </it>= 0.012). CT overestimated pathological tumor size in 92 (58.6%) patients, underestimated in 44 (28.0%) patients and equaled pathological size in 21 (31.4%) patients. Among the 122 patients with pT1 or pT2 tumors, there was a discrepancy between clinical and pathological staging in 35 (29%) patients. Of these, 21 (17%) patients were down-staged post-operatively and 14 (11.5%) were up-staged. Fuhrman grade correlated positively with radiological tumor size (<it>P </it>= 0.039) and pathological tumor stage (<it>P </it>= 0.003).</p> <p>Conclusions</p> <p>There was a statistically significant but small difference (3.1 mm) between mean radiological and mean pathological tumor size, but this is of uncertain clinical significance. For some patients, the difference leads to a discrepancy between clinical and pathological staging, which may have implications for pre-operative patient counseling regarding prognosis and management.</p

    The Exstrophy-epispadias complex

    Get PDF
    Exstrophy-epispadias complex (EEC) represents a spectrum of genitourinary malformations ranging in severity from epispadias (E) to classical bladder exstrophy (CEB) and exstrophy of the cloaca (EC). Depending on severity, EEC may involve the urinary system, musculoskeletal system, pelvis, pelvic floor, abdominal wall, genitalia, and sometimes the spine and anus. Prevalence at birth for the whole spectrum is reported at 1/10,000, ranging from 1/30,000 for CEB to 1/200,000 for EC, with an overall greater proportion of affected males. EEC is characterized by a visible defect of the lower abdominal wall, either with an evaginated bladder plate (CEB), or with an open urethral plate in males or a cleft in females (E). In CE, two exstrophied hemibladders, as well as omphalocele, an imperforate anus and spinal defects, can be seen after birth. EEC results from mechanical disruption or enlargement of the cloacal membrane; the timing of the rupture determines the severity of the malformation. The underlying cause remains unknown: both genetic and environmental factors are likely to play a role in the etiology of EEC. Diagnosis at birth is made on the basis of the clinical presentation but EEC may be detected prenatally by ultrasound from repeated non-visualization of a normally filled fetal bladder. Counseling should be provided to parents but, due to a favorable outcome, termination of the pregnancy is no longer recommended. Management is primarily surgical, with the main aims of obtaining secure abdominal wall closure, achieving urinary continence with preservation of renal function, and, finally, adequate cosmetic and functional genital reconstruction. Several methods for bladder reconstruction with creation of an outlet resistance during the newborn period are favored worldwide. Removal of the bladder template with complete urinary diversion to a rectal reservoir can be an alternative. After reconstructive surgery of the bladder, continence rates of about 80% are expected during childhood. Additional surgery might be needed to optimize bladder storage and emptying function. In cases of final reconstruction failure, urinary diversion should be undertaken. In puberty, genital and reproductive function are important issues. Psychosocial and psychosexual outcome depend on long-term multidisciplinary care to facilitate an adequate quality of life

    Strukturierte Ausbildung in der robotischen Urologie: Step-by-Step

    No full text

    Multiple Skrotalabszesse und rezidivierende Harnröhrenfistelbildung: Eine Odyssee!

    No full text
    corecore