5 research outputs found

    Improved Dual-Luciferase Reporter Assays for Nuclear Receptors

    Get PDF
    Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains

    Luciferase Reporter Assay System for Deciphering GPCR Pathways

    Get PDF
    The G protein coupled receptors (GPCR) represent the target class for nearly half of the current therapeutic drugs and remain to be the focus of drug discovery efforts. The complexity of receptor signaling continues to evolve. It is now known that many GPCRs are coupled to multiple G-proteins, which lead to regulation of respective signaling pathways downstream. Deciphering this receptor coupling will aid our understanding of the GPCR function and ultimately developing drug candidates. Here, we report the development of four homogenous bioluminescent reporter assays using improved destabilized luciferases and various response elements: CRE, NFAT-RE, SRE, and SRF-RE. These assays allowed measurement of major GPCR pathways including cAMP production, intracellular Ca2+ mobilizations, ERK/MAPK activ-ity, and small G protein RhoA activity, respectively using the same reporter assay format. We showed that we can decipher G protein activation profiles for exogenous m3 muscarinic receptor and endogenous β2-adrenergic receptors in HEK293 cells by using these four reporter assays. Furthermore, we demonstrated that these assays can be readily used for potency rankings of agonists and antagonists, and for high throughput screening
    corecore