10 research outputs found

    Methodological approaches, challenges, and opportunities in the application of Mendelian randomisation to lifecourse epidemiology: A systematic literature review

    Get PDF
    Diseases diagnosed in adulthood may have antecedents throughout (including prenatal) life. Gaining a better understanding of how exposures at different stages in the lifecourse influence health outcomes is key to elucidating the potential benefits of disease prevention strategies. Mendelian randomisation (MR) is increasingly used to estimate causal effects of exposures across the lifecourse on later life outcomes. This systematic literature review explores MR methods used to perform lifecourse investigations and reviews previous work that has utilised MR to elucidate the effects of factors acting at different stages of the lifecourse. We conducted searches in PubMed, Embase, Medline and MedRXiv databases. Thirteen methodological studies were identified. Four studies focused on the impact of time-varying exposures in the interpretation of "standard" MR techniques, five presented methods for repeat measures of the same exposure, and four described methodological approaches to handling multigenerational exposures. A further 127 studies presented the results of an applied research question. Over half of these estimated effects in a single generation and were largely confined to the exploration of questions regarding body composition. The remaining mostly estimated maternal effects. There is a growing body of research focused on the development and application of MR methods to address lifecourse research questions. The underlying assumptions require careful consideration and the interpretation of results rely on select conditions. Whilst we do not advocate for a particular strategy, we encourage practitioners to make informed decisions on how to approach a research question in this field with a solid understanding of the limitations present and how these may be affected by the research question, modelling approach, instrument selection, and data availability

    Meta-regression of genome-wide association studies to estimate age-varying genetic effects

    No full text
    Fixed-effect meta-analysis has been used to summarize genetic effects on a phenotype across multiple Genome-Wide Association Studies (GWAS) assuming a common underlying genetic effect. Genetic effects may vary with age (or other characteristics), and not allowing for this in a GWAS might lead to bias. Meta-regression models between study heterogeneity and allows effect modification of the genetic effects to be explored. The aim of this study was to explore the use of meta-analysis and meta-regression for estimating age-varying genetic effects on phenotypes. With simulations we compared the performance of meta-regression to fixed-effect and random -effects meta-analyses in estimating (i) main genetic effects and (ii) age-varying genetic effects (SNP by age interactions) from multiple GWAS studies under a range of scenarios. We applied meta-regression on publicly available summary data to estimate the main and age-varying genetic effects of the FTO SNP rs9939609 on Body Mass Index (BMI). Fixed-effect and random-effects meta-analyses accurately estimated genetic effects when these did not change with age. Meta-regression accurately estimated both main genetic effects and age-varying genetic effects. When the number of studies or the age-diversity between studies was low, meta-regression had limited power. In the applied example, each additional minor allele (A) of rs9939609 was inversely associated with BMI at ages 0 to 3, and positively associated at ages 5.5 to 13. Our findings challenge the assumption that genetic effects are consistent across all ages and provide a method for exploring this. GWAS consortia should be encouraged to use meta-regression to explore age-varying genetic effects

    Exploring the causal effects of genetic liability to ADHD and Autism on Alzheimer’s disease

    No full text
    Few studies suggest possible links between attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and Alzheimer’s disease but they have been limited by small sample sizes, diagnostic and recall bias. We used two-sample Mendelian randomization (MR) to estimate the bidirectional causal association between genetic liability to ADHD and ASD on Alzheimer’s disease. In addition, we estimated the causal effects independently of educational attainment and IQ, through multivariable Mendelian randomization (MVMR). We employed genetic variants associated with ADHD (20,183 cases/35,191 controls), ASD (18,381 cases/27,969 controls), Alzheimer’s disease (71,880 cases/383,378 controls), educational attainment (n = 766,345) and IQ (n = 269,867) using the largest GWAS of European ancestry. There was limited evidence to suggest a causal effect of genetic liability to ADHD (odds ratio [OR] = 1.00, 95% CI: 0.98–1.02, P = 0.39) or ASD (OR = 0.99, 95% CI: 0.97–1.01, P = 0.70) on Alzheimer’s disease. Similar causal effect estimates were identified as direct effects, independent of educational attainment (ADHD: OR = 1.00, 95% CI: 0.99–1.01, P = 0.76; ASD: OR = 0.99, 95% CI: 0.98–1.00, P = 0.28) and IQ (ADHD: OR = 1.00, 95% CI: 0.99–1.02. P = 0.29; ASD: OR = 0.99, 95% CI: 0.98–1.01, P = 0.99). Genetic liability to Alzheimer’s disease was not found to have a causal effect on risk of ADHD or ASD (ADHD: OR = 1.12, 95% CI: 0.86–1.44, P = 0.37; ASD: OR = 1.19, 95% CI: 0.94–1.51, P = 0.14). We found limited evidence to suggest a causal effect of genetic liability to ADHD or ASD on Alzheimer’s disease; and vice versa

    Parental inflammatory bowel disease and autism in children.

    Get PDF
    Funder: the South-Eastern Norway Regional Health Authority (2020022, 2018059) and the Research Council of Norway (274611, 288083)Funder: NIMH (1U01MH109514-01)Funder: the MQ: Transforming Mental Health (grant code: MQDS17/40), the Medical Research Council UK (grant code: MC_PC_17213 and grant code: MR/S037675/1), NIHR (project code: NIHR202646), and the BMA Foundation (J Moulton grant 2019)Funder: NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of BristolFunder: the Swedish Research Council (VR2017-02900)Evidence linking parental inflammatory bowel disease (IBD) with autism in children is inconclusive. We conducted four complementary studies to investigate associations between parental IBD and autism in children, and elucidated their underlying etiology. Conducting a nationwide population-based cohort study using Swedish registers, we found evidence of associations between parental diagnoses of IBD and autism in children. Polygenic risk score analyses of the Avon Longitudinal Study of Parents and Children suggested associations between maternal genetic liability to IBD and autistic traits in children. Two-sample Mendelian randomization analyses provided evidence of a potential causal effect of genetic liability to IBD, especially ulcerative colitis, on autism. Linkage disequilibrium score regression did not indicate a genetic correlation between IBD and autism. Triangulating evidence from these four complementary approaches, we found evidence of a potential causal link between parental, particularly maternal, IBD and autism in children. Perinatal immune dysregulation, micronutrient malabsorption and anemia may be implicated
    corecore