26 research outputs found

    Perinatal high methyl donor alters gene expression in IGF system in male offspring without altering DNA methylation

    No full text
    Aim: To investigate the effect of a protein restriction and a supplementation with methyl donor nutrients during fetal and early postnatal life on the expression and epigenetic state of imprinted genes from the IGF system. Materials & methods: Pregnant female rats were fed a protein-restricted diet supplemented or not with methyl donor. Results: Gene expression of the Igf2, H19, Igf1, Igf2r and Plagl1 genes in the liver of male offspring at birth and weaning was strongly influenced by maternal diet. Whereas the methylation profiles of the Igf2, H19 and Igf2r genes were remarkably stable, DNA methylation of Plagl1 promoter was slightly modified. Conclusion: DNA methylation of most, but not all, imprinted gene regulatory regions was resistant to methyl group nutritional supply. Lay abstract: Fetal environment influences fetal growth and may confer a risk to develop metabolic diseases, possibly through alterations in the epigenetic state of the genome. Imprinted genes constitute a special class of genes that are crucial for the control of fetal and postnatal growth and are closely associated with energy metabolism. In addition, these genes are finely regulated by epigenetic mechanisms that are themselves influenced by environmental factors. This study showed that methyl donor nutrients in maternal diet strongly influenced the expression level of imprinted genes in the liver of rat offspring, despite a mild effect on epigenetic regulation

    Excess of methyl donors in maternal diet affects postnatal down regulation of Igf2, Igf2r and H19 genes in liver

    No full text
    Excess of methyl donors in maternal diet affects postnatal down regulation of Igf2, Igf2r and H19 genes in liver. Congrès SF DOHA

    Perinatal high methyl donor alters gene expression in IGF system in male offspring without altering DNA methylation

    No full text
    Aim: To investigate the effect of a protein restriction and a supplementation with methyl donor nutrients during fetal and early postnatal life on the expression and epigenetic state of imprinted genes from the IGF system. Materials & methods: Pregnant female rats were fed a protein-restricted diet supplemented or not with methyl donor. Results: Gene expression of the Igf2, H19, Igf1, Igf2r and Plagl1 genes in the liver of male offspring at birth and weaning was strongly influenced by maternal diet. Whereas the methylation profiles of the Igf2, H19 and Igf2r genes were remarkably stable, DNA methylation of Plagl1 promoter was slightly modified. Conclusion: DNA methylation of most, but not all, imprinted gene regulatory regions was resistant to methyl group nutritional supply. Lay abstract: Fetal environment influences fetal growth and may confer a risk to develop metabolic diseases, possibly through alterations in the epigenetic state of the genome. Imprinted genes constitute a special class of genes that are crucial for the control of fetal and postnatal growth and are closely associated with energy metabolism. In addition, these genes are finely regulated by epigenetic mechanisms that are themselves influenced by environmental factors. This study showed that methyl donor nutrients in maternal diet strongly influenced the expression level of imprinted genes in the liver of rat offspring, despite a mild effect on epigenetic regulation

    Protein and methyl donors in maternal diet influence imprinted gene expression in offspring without altering DNA methylation

    No full text
    Protein and methyl donors in maternal diet influence imprinted gene expression in offspring without altering DNA methylation. Game of Epigenetic
    corecore