830 research outputs found

    X-ray Photons in the CO 2-1 'Lacuna' of NGC 2110

    Full text link
    A recent ALMA study of the Seyfert 2 Active Galactic Nucleus (AGN) NGC 2110 by Rosario et al. (2019) has reported a remarkable lack of CO 2-1 emission from the circumnuclear region, where optical lines and H2 emission are observed, leading to the suggestion of excitation of the molecular clouds by the AGN. Since interaction with X-ray photons could be the cause of this excitation, we have searched the archival Chandra data for corroborating evidence. We report an extra-nuclear ~1'' (~170 pc) feature found in the soft (<1.0 keV) Chandra data of the Seyfert 2 Active Galactic Nucleus (AGN) NGC 2110. This feature is elongated to the north of the nucleus and its shape matches well that of the optical lines and H2 emission observed in this region, which is devoid of CO 2-1 emission. The Chandra image completes the emerging picture of a multi-phase circumnuclear medium excited by the X-rays from the AGN, with dense warm molecular clouds emitting in H2 but depleted of CO 2-1 emission.Comment: ApJ Letters - in pres

    Drug repurposing against COVID-19. focus on anticancer agents

    Get PDF
    The very limited time allowed to face the COVID-19 pandemic poses a pressing challenge to find proper therapeutic approaches. However, synthesis and full investigation from preclinical studies to phase III trials of new medications is a time-consuming procedure, and not viable in a global emergency, such as the one we are facing

    MARKETING LOAN IMPACTS - RICE AND COTTON

    Get PDF
    Crop Production/Industries,

    Unidentifed gamma-ray sources: hunting gamma-ray blazars

    Full text link
    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified gamma-ray sources (UGSs). Despite the large improvements of Fermi in the localization of gamma-ray sources with respect to the past gamma-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-Field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of gamma-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the gamma-ray sources to reognize if there is a blazar candidate within the positional uncertainty region of a generic gamma-ray source. With this new IR diagnostic tool, we searched for gamma-ray blazar candidates associated to the UGS sample of the second Fermi gamma-ray catalog (2FGL). We found that our method associates at least one gamma-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to gamma-ray sources in the 2FGL catalog.Comment: 24 pages, 4 figures, Accepted for publication on the Astrophysical Journa

    Hidden AGNs in Early-Type Galaxies

    Get PDF
    We present a stacking analysis of the complete sample of Early Type Galaxies (ETGs) in the \textit{Chandra} COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0<z<1.50<z<1.5 and {10}^{9}. Using established scaling relations, we subtract the contribution of X-ray binary populations, to estimate the combined emission of hot ISM and AGN. To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe LX,gasLK4.5L_{X,gas}\propto L_K^{4.5} for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consisten t with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (1.2\sim 1.2) ETGs with average high X-ray luminosity (L_{X-LMXB}\gtrsim 6\times{10}^{42}\mbox{ erg}/\mbox{s}). These luminosities are consistent with the presence ofhighly absorbed "hidden" AGNs in these ETGs, which are not visible in their optical-IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminoaity in lower stellar mass ETGs (L_K\lesssim{10}^{11}L_{\astrosun}), relative to the local LX,gasLK4.5L_{X,gas}\propto L_K^{4.5} relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion 105104M˙Edd{10}^{-5}-{10}^{-4}\dot{M}_{Edd} onto M_{BH}\sim {10}^{6}-{10}^{8}\,M_{\astrosun}.Comment: 22 pages, 7 figures, 2 tables. Accepted for publications on Ap

    A Chandra Snapshot Survey for 3C Radio Galaxies with redshifts between 0.3 and 0.5

    Full text link
    This paper contains an analysis of short Chandra observations of 19 3C sources with redshifts between 0.3 and 0.5 not previously observed in the X-rays. This sample is part of a project to obtain Chandra data for all of the extragalactic sources in the 3C catalogue. Nuclear X-ray intensities as well as any X-ray emission associated with radio jet knots, hotspots or lobes have been measured in 3 energy bands: soft, medium and hard. Standard X-ray spectral analysis for the 4 brightest nuclei has been also performed. X-ray emission was detected for all the nuclei of the radio sources in the current sample with the exception of 3C 435A. There is one compact steep spectrum (CSS) source while all the others are FRII radio galaxies. X-ray emission from two galaxy clusters (3C 19 and 3C 320); from 6 hotspots in 4 radio galaxies (3C 16, 3C 19, 3C 268.2, 3C 313); and extended X-ray emission on kpc scales in 3C 187 and 3C 313, has been detected.Comment: 33 pages, 22 figures, 7 tables, accepted for publication on the ApJ Supplement Series. arXiv admin note: text overlap with arXiv:1210.602

    Identification of roughness with optimal contact response with respect to real contact area and normal stiffness

    Get PDF
    Additive manufacturing technologies are a key point of the current era of Industry 4.0, promoting the production of mechanical components via the addition of subsequent layers of material. Then, they may be also used to produce surfaces tailored to achieve a desired mechanical contact response. In this work, we develop a method to prototype profiles optimizing a suitable trade-off between two different target mechanical responses. The mechanical design problem is solved relying on both physical assumptions and optimization methods. An algorithm is proposed, exploiting an analogy between genetics and the multiscale characterization of roughness, where various length-scales are described in terms of rough profiles, named chromosomes. Finally, the proposed algorithm is tested on a representative example, and the topological and spectral features of roughness of the optimized profiles are discussed
    corecore