7 research outputs found

    Publisher Correction: Towards an ecosystem model of infectious disease

    Get PDF
    Correction to: Nature Ecology & Evolution https://doi.org/10.1038/s41559-021-01454-8, published online 17 May 2021

    Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia

    Get PDF
    The parasitic dinoflagellate Hematodinium perezi infects the American blue crab Callinectes sapidus and other decapods along the Eastern seaboard and Gulf of Mexico coast of the USA. Large juvenile and adult blue crabs experience high mortality during seasonal outbreaks of H. perezi, but less is known about its presence in the early life history stages of this host. We determined the prevalence of H. perezi in megalopae and early benthic juvenile crabs from multiple locations along the Virginia portion of the Delmarva Peninsula. The DNA of H. perezi was not detected in any megalopae collected from several locations within the oceanic coastal bay complex in which H. perezi is found at high prevalence levels. However, prevalence levels were high in early benthic juveniles from 2 oceanic coastal embayments: South Bay and Cobb Bay. Prevalence levels were lower at locations within Chesapeake Bay, including Cherrystone Creek, Hungars Creek, and Pungoteague Creek. Sampling over different seasons and several consecutive years indicates that disease transmission occurs rapidly after megalopae settle in high-salinity bays along the Delmarva Peninsula during the late summer and fall. Infected juvenile crabs can overwinter with the parasite and, when subjected to increasing water temperatures in spring, infections progress rapidly, culminating in transmission to other crabs in late spring and early summer. In high-salinity embayments, H. perezi can reach high prevalence levels and may significantly affect recruitment of juvenile blue crabs into the adult fisher

    Towards an ecosystem model of infectious disease

    Get PDF
    Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens-and the best ways to manage this-remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics
    corecore