7,181 research outputs found

    An aerodynamic investigation of two 1.83-meter-diameter fan systems designed to drive a subsonic wind tunnel

    Get PDF
    An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths

    Large-scale wind-tunnel tests of descent performance of an airplane model with a tilt wing and differential propeller thrust

    Get PDF
    Wind tunnel tests of wing stall, performance, and longitudinal stability & control of large model v/stol tilt wing transport aircraf

    Measuring software technology

    Get PDF
    Results are reported from a series of investigations into the effectiveness of various methods and tools used in a software production environment. The basis for the analysis is a project data base, built through extensive data collection and process instrumentation. The project profiles become an organizational memory, serving as a reference point for an active program of measurement and experimentation on software technology

    An experimental investigation of two large annular diffusers with swirling and distorted inflow

    Get PDF
    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery

    Proof of the Generalized Second Law for Quasistationary Semiclassical Black Holes

    Full text link
    A simple direct explicit proof of the generalized second law of black hole thermodynamics is given for a quasistationary semiclassical black hole.Comment: 12 pages, LaTeX, report Alberta-Thy-10-93 (revision of paper in response to Phys. Rev. Lett. referees' comments, which suffered a series of long delays

    Managers Handbook for Software Development

    Get PDF
    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences with flight dynamics software development. The management aspects of organizing the project, producing a development plan, estimation costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying are described

    Thorny Spheres and Black Holes with Strings

    Get PDF
    We consider thorny spheres, that is 2-dimensional compact surfaces which are everywhere locally isometric to a round sphere S2S^2 except for a finite number of isolated points where they have conical singularities. We use thorny spheres to generate, from a spherically symmetric solution of the Einstein equations, new solutions which describe spacetimes pierced by an arbitrary number of infinitely thin cosmic strings radially directed. Each string produces an angle deficit proportional to its tension, while the metric outside the strings is a locally spherically symmetric solution. We prove that there can be arbitrary configurations of strings provided that the directions of the strings obey a certain equilibrium condition. In general this equilibrium condition can be written as a force-balance equation for string forces defined in a flat 3-space in which the thorny sphere is isometrically embedded, or as a constraint on the product of holonomies around strings in an alternative 3-space that is flat except for the strings. In the case of small string tensions, the constraint equation has the form of a linear relation between unit vectors directed along the string axes.Comment: 37 pages, 11 figure

    Evidence for Heating of Neutron Stars by Magnetic Field Decay

    Get PDF
    We show the existence of a strong trend between neutron star surface temperature and the dipolar component of the magnetic field extending through three orders of field magnitude, a range that includes magnetars, radio-quiet isolated neutron stars, and many ordinary radio pulsars. We suggest that this trend can be explained by the decay of currents in the crust over a time scale of few Myr. We estimate the minimum temperature that a NS with a given magnetic field can reach in this interpretation.Comment: 4 pages, 1 figures, version accepted for publication in Phys. Rev. Let

    Light Deflection, Lensing, and Time Delays from Gravitational Potentials and Fermat's Principle in the Presence of a Cosmological Constant

    Full text link
    The contribution of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's Principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ\Lambda-term in the bending angle and the lens equation. The consequences on time delay expressions are explored. While it is known that Λ\Lambda contributes to the gravitational time delay, it is shown here that a new Λ\Lambda-term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ\Lambda contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.Comment: 6 pages, 1 figure, matches version published in PR

    Particle Motion and Scalar Field Propagation in Myers-Perry Black Hole Spacetimes in All Dimensions

    Full text link
    We study separability of the Hamilton-Jacobi and massive Klein-Gordon equations in the general Myers-Perry black hole background in all dimensions. Complete separation of both equations is carried out in cases when there are two sets of equal black hole rotation parameters, which significantly enlarges the rotational symmetry group. We explicitly construct a nontrivial irreducible Killing tensor associated with the enlarged symmetry group which permits separation. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties.Comment: 16 pages, LaTeX2
    corecore