407 research outputs found

    Flux Mapping Measurements to Determine the Location of the Permanent Detectors in the Enrico Fermi Reactor.

    Get PDF

    Louse (Insecta : Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable

    Get PDF
    Lice are ectoparasitic insects hosted by birds and mammals. Mitochondrial 12S rRNA sequences obtained from lice show considerable length variation and are very difficult to align. We show that the louse 12S rRNA domain III secondary structure displays considerable variation compared to other insects, in both the shape and number of stems and loops. Phylogenetic trees constructed from tree edit distances between louse 12S rRNA structures do not closely resemble trees constructed from sequence data, suggesting that at least some of this structural variation has arisen independently in different louse lineages. Taken together with previous work on mitochondrial gene order and elevated rates of substitution in louse mitochondrial sequences, the structural variation in louse 12S rRNA confirms the highly distinctive nature of molecular evolution in these insects

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering

    Full text link
    We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acoustic peaks for the multipoles with l>~200 while it enhances the amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate a *unique phase shift* of the CMB acoustic oscillations that for adiabatic initial conditions cannot be caused by any other standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed of the photon-baryon plasma. We find that from a high resolution, low noise instrument such as CMBPOL the effective number of light neutrino species can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR

    The Magnificent Seven: Magnetic fields and surface temperature distributions

    Get PDF
    Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT data and characterized by thermal X-ray spectra are known. They exhibit very similar properties and despite intensive searches their number remained constant since 2001 which led to their name ``The Magnificent Seven''. Five of the stars exhibit pulsations in their X-ray flux with periods in the range of 3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the X-ray spectra which are interpreted as cyclotron resonance absorption lines by protons or heavy ions and / or atomic transitions shifted to X-ray energies by strong magnetic fields of the order of 10^13 G. New XMM-Newton observations indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals variations in derived emission temperature and absorption line depth with pulse phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are interpreted as due to free precession of the neutron star. Modeling of the pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the surface temperature distribution of the neutron stars indicating hot polar caps which have different temperatures, different sizes and are probably not located in antipodal positions.Comment: 10 pages, 8 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
    • 

    corecore