1,937 research outputs found

    Charge transfer and coherence dynamics of tunnelling system coupled to a harmonic oscillator

    Full text link
    We study the transition probability and coherence of a two-site system, interacting with an oscillator. Both properties depend on the initial preparation. The oscillator is prepared in a thermal state and, even though it cannot be considered as an extended bath, it produces decoherence because of the large number of states involved in the dynamics. In the case in which the oscillator is intially displaced a coherent dynamics of change entangled with oscillator modes takes place. Coherency is however degraded as far as the oscillator mass increases producing a increasingly large recoherence time. Calculations are carried on by exact diagonalization and compared with two semiclassical approximations. The role of the quantum effects are highlighted in the long-time dynamics, where semiclassical approaches give rise to a dissipative behaviour. Moreover, we find that the oscillator dynamics has to be taken into account, even in a semiclassical approximation, in order to reproduce a thermally activated enhancement of the transition probability

    Entanglement properties of spin models in triangular lattices

    Full text link
    The different quantum phases appearing in strongly correlated systems as well as their transitions are closely related to the entanglement shared between their constituents. In 1D systems, it is well established that the entanglement spectrum is linked to the symmetries that protect the different quantum phases. This relation extends even further at the phase transitions where a direct link associates the entanglement spectrum to the conformal field theory describing the former. For 2D systems much less is known. The lattice geometry becomes a crucial aspect to consider when studying entanglement and phase transitions. Here, we analyze the entanglement properties of triangular spin lattice models by considering also concepts borrowed from quantum information theory such as geometric entanglement.Comment: 19 pages, 8 figure

    A case study of spin-11 Heisenberg model in a triangular lattice

    Full text link
    We study the spin-11 model in a triangular lattice in presence of a uniaxial anisotropy field using a Cluster Mean-Field approach (CMF). The interplay between antiferromagnetic exchange, lattice geometry and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF yields two supersolid (SS) phases compatible with those present in the spin-1/21/2 XXZ model onto which the spin-11 system maps. Between these two SS phases, the three-sublattice order is broken and the results of the CMF depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.Comment: 7 pages, 4 figures, RevTeX 4. The abstract and conclusions have been modified and the manuscript has been extende

    Insights from a Case of Good’s Syndrome (Immunodeficiency with Thymoma)

    Get PDF
    Immunodeficiency with thymoma was described by R.A. Good in 1954 and is also named after him. The syndrome is characterized by hypogammaglobulinemia associated with thymoma and recurrent infections, bacterial but also viral, fungal and parasitic. Autoimmune diseases, mainly pure red cell aplasia, other hematological disorders and erosive lichen planus are a common finding. We describe here a typical case exhibiting all these clinical features and report a detailed immunophenotypic assessment, as well as the positivity for autoantibodies against three cytokines (IFN-alpha, IL-6 and GM-CSF), which may add to known immune abnormalities. A review of the published literature, based on case series and immunological studies, offers some hints on the still unsolved issues of this rare condition

    Mesoscopic continuous and discrete channels for quantum information transfer

    Full text link
    We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions

    Pretargeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malignant glioma patients: A pilot study

    Get PDF
    In a previous study we applied a three-step avidin–biotin pretargeting approach to target 90Y-biotin to the tumour in patients with recurrent high grade glioma. The encouraging results obtained in this phase I–II study prompted us to apply the same approach in an adjuvant setting, to evaluate (i) time to relapse and (ii) overall survival. We enrolled 37 high grade glioma patients, 17 with grade III glioma and 20 with glioblastoma, in a controlled open non-randomized study. All patients received surgery and radiotherapy and were disease-free by neuroradiological examinations. Nineteen patients (treated) received adjuvant treatment with radioimmunotherapy. In the treated glioblastoma patients, median disease-free interval was 28 months (range=9–59); median survival was 33.5 months and one patient is still without evidence of disease. All 12 control glioblastoma patients died after a median survival from diagnosis of 8 months. In the treated grade III glioma patients median disease-free interval was 56 months (range=15–60) and survival cannot be calculated as only two, within this group, died. Three-step radioimmunotherapy promises to have an important role as adjuvant treatment in high grade gliomas, particularly in glioblastoma where it impedes progression, prolonging time to relapse and overall survival. A further randomized trial is justified

    Two qubits entanglement dynamics in a symmetry-broken environment

    Full text link
    We study the temporal evolution of entanglement pertaining to two qubits interacting with a thermal bath. In particular we consider the simplest nontrivial spin bath models where symmetry breaking occurs and treat them by mean field approximation. We analytically find decoherence free entangled states as well as entangled states with an exponential decay of the quantum correlation at finite temperature.Comment: 10 pages, 2 figure

    Double dot chain as a macroscopic quantum bit

    Full text link
    We consider an array of N quantum dot pairs interacting via Coulomb interaction between adjacent dots and hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the array maps in an effective two level system with energy separation becoming exponentially small in the macroscopic (large N) limit. Decoherence at zero temperature is studied in the limit of weak coupling with phonons. In this case the macroscopic limit is robust with respect to decoherence. Some possible applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press
    corecore