3 research outputs found

    Biological treatment strategies for disc degeneration: potentials and shortcomings

    Get PDF
    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patien

    Biological treatment strategies for disc degeneration: potentials and shortcomings

    No full text
    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient

    Chronic Salmonella enterica Serovar Typhimurium-Induced Colitis and Cholangitis in Streptomycin-Pretreated Nramp1(+/+) Mice

    No full text
    Salmonella enterica subspecies 1 serovar Typhimurium is an enteric bacterial pathogen infecting a broad range of hosts. In susceptible Nramp1(−)(/)(−) (Slc11α1(−)(/)(−)) mice, serovar Typhimurium cannot efficiently colonize the intestine but causes a systemic typhoid-like infection. However, after pretreatment with streptomycin, these susceptible (C57BL/6 and BALB/c) mice develop acute serovar Typhimurium-induced colitis (M. Barthel et al., Infect. Immun. 71:2839-2858, 2003). It was not clear whether resistant Nramp1(+/+) (Slc11α1(+/+)) mouse strains would similarly develop colitis. Here we compared serovar Typhimurium infection in streptomycin-pretreated susceptible (C57BL/6) and resistant (DBA/2 and 129Sv/Ev) mouse strains: We found that acute colitis (days 1 and 3 postinfection) is strikingly similar in susceptible and resistant mice. In 129Sv/Ev mice we followed the serovar Typhimurium infection for as long as 6 weeks. After the initial phase of acute colitis, these animals developed chronic crypt-destructive colitis, including ulceration, crypt abscesses, pronounced mucosal and submucosal infiltrates, overshooting regeneration of the epithelium, and crypt branching. Moreover, we observed inflammation of the gall duct epithelium (cholangitis) in the 129Sv/Ev mice between days 14 and 43 of infection. Cholangitis was not attributable to side effects of the streptomycin treatment. Furthermore, chronic infection of 129Sv/Ev mice in a typhoid fever model did not lead to cholangitis. We propose that streptomycin-pretreated 129Sv/Ev mice provide a robust murine model for chronic enteric salmonellosis including complications such as cholangitis
    corecore