102 research outputs found
Nulliparity enhances the risk of second primary malignancy of the breast in a cohort of women treated for thyroid cancer
<p>Abstract</p> <p>Background</p> <p>Many studies have reported an increased risk of developing a second primary malignancy (SPM) of the breast in women treated for thyroid cancer. In this study, we investigated several potential risk factors for this association. The aim of this retrospective cohort study was to identify a subgroup of women surgically treated for papillary thyroid cancer that may benefit from more careful breast cancer screening.</p> <p>Methods</p> <p>A total of 101 women surgically treated for papillary thyroid cancer from 1996 to 2009 with subsequent follow-up were interviewed by phone regarding personal risk factors and lifestyle habits. Only 75 questionnaires could be evaluated due to a 25.7% rate of patients not retrieved or refusing the interview. Data analysis was performed using a multivariate logistic model.</p> <p>Results</p> <p>The standardised incidence ratio (SIR) for breast cancer was 3.58 (95% IC 1.14 - 8.37). Our data suggest a protective effect of multiparity on the development of a SPM of the breast (O.R. 0.15; 95% IC 0.25 - 0.86). Significant associations were not found with other known risk factors including Body Mass Index (BMI), age at first tumour, concurrent metabolic diseases, smoking, physical activity and familiarity.</p> <p>Conclusions</p> <p>This study confirms that a higher incidence of SPM of the breast is observed in women treated for papillary thyroid cancer. Additionally, this risk is increased by nulliparity, thus a strict breast screening program for nulliparous women treated for thyroid cancer may be advisable.</p
Self-Nanoemulsifying Drug Delivery System (SNEDDS) Using Lipophilic Extract of Viscum album subsp. austriacum (Wiesb.) Vollm
Camila Faria de Amorim Pereira,1,* Michelle Nonato de Oliveira Melo,1,* Vania Emerich Bucco de Campos,2 Ivania Paiva Pereira,1 Adriana Passos Oliveira,1 Mariana Souza Rocha,1 João Vitor da Costa Batista,3,4 Valter Paes de Almeida,5 Irailson Thierry Monchak,5 Eduardo Ricci-Júnior,6 Rafael Garrett,7 Aline Gabrielle Alves Carvalho,7 Jane Manfron,5 Stephan Baumgartner,3,8,9 Carla Holandino1,3 1Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; 2Department of Pharmacy, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; 3Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland; 4Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland; 5Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil; 6Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; 7Metabolomics Laboratory, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; 8Institute of Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany; 9Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland*These authors contributed equally to this workCorrespondence: Carla Holandino, Multidisciplinary Laboratory of Pharmaceutical Sciences, Universidade Federal do Rio de Janeiro, Faculty of Pharmacy, Block B basement, Room 34, 373, Carlos Chagas Filho Avenue, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil, Email [email protected] Stephan Baumgartner, Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland, Email [email protected] and Purpose: Natural products are potential sources of anticancer components. Among various species, the lipophilic extract of the Viscum album subsp. austriacum (Wiesb.) Vollm. (VALE) has shown promising therapeutic potential. The present work aimed to qualify the plant source and characterize the extract’s chemical profile. In addition, a self-nanoemulsifying drug delivery system (SNEDDS) containing VALE (SNEDDS-VALE) was developed.Methods: V. album subsp. austriacum histochemistry was performed, and the chemical profile of VALE was analyzed by GC-MS. After the SNEEDS-VALE development, its morphology was visualized by transmission electron microscopy (TEM), while its stability was evaluated by the average droplet size, polydispersity index (PdI) and pH. Lastly, SNEDDS-VALE chemical stability was evaluated by LC-DAD-MS.Results: The histochemical analysis showed the presence of lipophilic compounds in the leaves and stems. The major compound in the VALE was oleanolic acid, followed by lupeol acetate and ursolic acid. SNEDDS was composed of medium chain triglyceride and Kolliphor® RH 40 (PEG-40 hydrogenated castor oil). A homogeneous, isotropic and stable nanoemulsion was obtained, with an average size of 36.87 ± 1.04 nm and PdI of 0.14 ± 0.02, for 14 weeks.Conclusion: This is the first histochemistry analysis of V. album subsp. austriacum growing on Pinus sylvestris L. which provided detailed information regarding its lipophilic compounds. A homogeneous, isotropic and stable SNEDDS-VALE was obtained to improve the low water solubility of VALE. Further, in vitro and in vivo experiments should be performed, in order to evaluate the antitumoral potential of SNEDDS-VALE. Keywords: Viscum album subsp. austriacum, mistletoe, lipophilic extract, oleanolic acid, SNEDD
High temperatures and absence of light affect the hatching of resting eggs of Daphnia in the tropics
Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation
<p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p
- …