2,929 research outputs found

    Vacuum Fluctuations of Energy Density can lead to the observed Cosmological Constant

    Full text link
    The energy density associated with Planck length is ρuvLP4\rho_{uv}\propto L_P^{-4} while the energy density associated with the Hubble length is ρirLH4\rho_{ir}\propto L_H^{-4} where LH=1/HL_H=1/H. The observed value of the dark energy density is quite different from {\it either} of these and is close to the geometric mean of the two: ρvacρuvρir\rho_{vac}\simeq \sqrt{\rho_{uv} \rho_{ir}}. It is argued that classical gravity is actually a probe of the vacuum {\it fluctuations} of energy density, rather than the energy density itself. While the globally defined ground state, being an eigenstate of Hamiltonian, will not have any fluctuations, the ground state energy in the finite region of space bounded by the cosmic horizon will exhibit fluctuations Δρvac(LP,LH)\Delta\rho_{\rm vac}(L_P, L_H). When used as a source of gravity, this Δρ\Delta \rho should lead to a spacetime with a horizon size LHL_H. This bootstrapping condition leads naturally to an effective dark energy density Δρ(LuvLH)2H2/G\Delta\rho\propto (L_{uv}L_H)^{-2}\propto H^2/G which is precisely the observed value. The model requires, either (i) a stochastic fluctuations of vacuum energy which is correlated over about a Hubble time or (ii) a semi- anthropic interpretation. The implications are discussed.Comment: r pages; revtex; comments welcom

    Hypothesis of path integral duality: Applications to QED

    Full text link
    We use the modified propagator for quantum field based on a ``principle of path integral duality" proposed earlier in a paper by Padmanabhan to investigate several results in QED. This procedure modifies the Feynman propagator by the introduction of a fundamental length scale. We use this modified propagator for the Dirac particles to evaluate the first order radiative corrections in QED. We find that the extra factor of the modified propagator acts like a regulator at the Planck scales thereby removing the divergences that otherwise appear in the conventional radiative correction calculations of QED. We find that:(i) all the three renormalisation factors Z1Z_1, Z2Z_2, and Z3Z_3 pick up finite corrections and (ii) the modified propagator breaks the gauge invariance at a very small level of O(1045){\mathcal{O}}(10^{-45}). The implications of this result to generation of the primordial seed magnetic fields are discussed.Comment: 15 pages, LaTeX2e (uses ijmpd.sty); To appear in IJMP-D; References adde

    The hypothesis of path integral duality II: corrections to quantum field theoretic results

    Get PDF
    In the path integral expression for a Feynman propagator of a spinless particle of mass mm, the path integral amplitude for a path of proper length R(x,xgμν){\cal R}(x,x'| g_{\mu\nu}) connecting events xx and xx' in a spacetime described by the metric tensor gμνg_{\mu\nu} is exp[mR(x,xgμν)]\exp-[m {\cal R}(x,x'| g_{\mu\nu})]. In a recent paper, assuming the path integral amplitude to be invariant under the duality transformation R(LP2/R){\cal R} \to (L_P^2/{\cal R}), Padmanabhan has evaluated the modified Feynman propagator in an arbitrary curved spacetime. He finds that the essential feature of this `principle of path integral duality' is that the Euclidean proper distance (Δx)2(\Delta x)^2 between two infinitesimally separated spacetime events is replaced by [(Δx)2+4LP2][(\Delta x)^2 + 4L_P^2 ]. In other words, under the duality principle the spacetime behaves as though it has a `zero-point length' LPL_P, a feature that is expected to arise in a quantum theory of gravity. In the Schwinger's proper time description of the Feynman propagator, the weightage factor for a path with a proper time ss is exp(m2s)\exp-(m^2s). Invoking Padmanabhan's `principle of path integral duality' corresponds to modifying the weightage factor exp(m2s)\exp-(m^2s) to exp[m2s+(LP2/s)]\exp-[m^2s + (L_P^2/s)]. In this paper, we use this modified weightage factor in Schwinger's proper time formalism to evaluate the quantum gravitational corrections to some of the standard quantum field theoretic results in flat and curved spacetimes. We find that the extra factor exp(LP2/s)\exp-(L_P^2/s) acts as a regulator at the Planck scale thereby `removing' the divergences that otherwise appear in the theory. Finally, we discuss the wider implications of our analysis.Comment: 26 pages, Revte

    Response of finite-time particle detectors in non-inertial frames and curved spacetime

    Get PDF
    The response of the Unruh-DeWitt type monopole detectors which were coupled to the quantum field only for a finite proper time interval is studied for inertial and accelerated trajectories, in the Minkowski vacuum in (3+1) dimensions. Such a detector will respond even while on an inertial trajctory due to the transient effects. Further the response will also depend on the manner in which the detector is switched on and off. We consider the response in the case of smooth as well as abrupt switching of the detector. The former case is achieved with the aid of smooth window functions whose width, TT, determines the effective time scale for which the detector is coupled to the field. We obtain a general formula for the response of the detector when a window function is specified, and work out the response in detail for the case of gaussian and exponential window functions. A detailed discussion of both T0T \rightarrow 0 and TT \rightarrow \infty limits are given and several subtlities in the limiting procedure are clarified. The analysis is extended for detector responses in Schwarzschild and de-Sitter spacetimes in (1+1) dimensions.Comment: 29 pages, normal TeX, figures appended as postscript file, IUCAA Preprint # 23/9

    Scalar Field Dark Energy Perturbations and their Scale Dependence

    Full text link
    We estimate the amplitude of perturbation in dark energy at different length scales for a quintessence model with an exponential potential. It is shown that on length scales much smaller than hubble radius, perturbation in dark energy is negligible in comparison to that in in dark matter. However, on scales comparable to the hubble radius (λp>1000Mpc\lambda_{p}>1000\mathrm{Mpc}) the perturbation in dark energy in general cannot be neglected. As compared to the Λ\LambdaCDM model, large scale matter power spectrum is suppressed in a generic quintessence dark energy model. We show that on scales λp<1000Mpc\lambda_{p} < 1000\mathrm{Mpc}, this suppression is primarily due to different background evolution compared to Λ\LambdaCDM model. However, on much larger scales perturbation in dark energy can effect matter power spectrum significantly. Hence this analysis can act as a discriminator between Λ\LambdaCDM model and other generic dark energy models with wde1w_{de} \neq -1.Comment: 12 pages, 13 figures, added new section, accepted for publication in Phys. Rev.

    Why Does Gravity Ignore the Vacuum Energy?

    Get PDF
    The equations of motion for matter fields are invariant under the shift of the matter lagrangian by a constant. Such a shift changes the energy momentum tensor of matter by T^a_b --> T^a_b +\rho \delta^a_b. In the conventional approach, gravity breaks this symmetry and the gravitational field equations are not invariant under such a shift of the energy momentum tensor. I argue that until this symmetry is restored, one cannot obtain a satisfactory solution to the cosmological constant problem. I describe an alternative perspective to gravity in which the gravitational field equations are [G_{ab} -\kappa T_{ab}] n^an^b =0 for all null vectors n^a. This is obviously invariant under the change T^a_b --> T^a_b +\rho \delta^a_b and restores the symmetry under shifting the matter lagrangian by a constant. These equations are equivalent to G_{ab} = \kappa T_{ab} + Cg_{ab} where C is now an integration constant so that the role of the cosmological constant is very different in this approach. The cosmological constant now arises as an integration constant, somewhat like the mass M in the Schwarzschild metric, the value of which can be chosen depending on the physical context. These equations can be obtained from a variational principle which uses the null surfaces of spacetime as local Rindler horizons and can be given a thermodynamic interpretation. This approach turns out to be quite general and can encompass even the higher order corrections to Einstein's gravity and suggests a principle to determine the form of these corrections in a systematic manner.Comment: Invited Contribution to the IJMPD Special Issue on Dark Matter and Dark Energy edited by D.Ahluwalia and D. Grumiller. Appendix clarifies several conceptual and pedgogical aspects of surface term in Hilbert action; ver.2: references and some clarifications adde

    Hawking radiation in different coordinate settings: Complex paths approach

    Full text link
    We apply the technique of complex paths to obtain Hawking radiation in different coordinate representations of the Schwarzschild space-time. The coordinate representations we consider do not possess a singularity at the horizon unlike the standard Schwarzschild coordinate. However, the event horizon manifests itself as a singularity in the expression for the semiclassical action. This singularity is regularized by using the method of complex paths and we find that Hawking radiation is recovered in these coordinates indicating the covariance of Hawking radiation as far as these coordinates are concerned.Comment: 18 pages, 2 figures, Uses IOP style file; final version; accepted in Class. Quant. Gra

    Ultrafine grained materials through mechanical processing: An assessment

    Get PDF
    In this paper severe plastic deformation (SPD) and friction stir processing/ welding are examined. The structural changes due to SPD are reflected in improved mechanical properties. Advantages of SPD are pointed out. Within the SPD technique, a number of approaches are possible, e.g., equi-channel angular pressing/extrusion, high pressure torsion, accumulative roll bonding/fold - roll process, reciprocating extrusion – compression, cyclic close die forging, repetitive corrugation and straightening. Analyses available are elementary and often assume uniform stress and strain distribution. These processes are easily adapted to suit standard metal working equipment fitted with inexpensive devices and tools. However, scaling up the processes to handle large billets and achieve large tonnage production is difficult. In the near future, medium and small-scale industrial production only is likely. Friction stir process, a solid state technique for joining similar or dissimilar materials of equal or different thickness, has some key metallurgical, environmental and energy benefits. It is already being considered for applications in aerospace and automotive industries. Significant improvements in surface properties and superplastic flow have been established in friction stir processed materials. Velocity of tool movement and power input needed for fast rotation of the tool are the major variables. Since significant temperature rise is there during processing, in a proper analysis, the boundary conditions arising from thermal and mechanical constraints have to be satisfied simultaneously, which is an extremely difficult. A few key issues have to be addressed before large-scale production can be attempted. An integral approach that takes into account the total system of material, design, mechanics and component forming is likely to lead to industrially relevant solutions

    Ultrafine grained materials through mechanical processing: an assessment

    Get PDF
    In this paper severe plastic deformation (SPD) and friction stir processing/ welding are examined. The structural changes due to SPD are reflected in improved mechanical properties. Advantages of SPD are pointed out. Within the SPD technique, a number of approaches are possible, e.g., equi-channel angular pressing/extrusion, high pressure torsion, accumulative roll bonding/fold - roll process, reciprocating extrusion - compression, cyclic close die forging, repetitive corrugation and straightening. Analyses available are elementary and often assume uniform stress and strain distribution. These processes are easily adapted to suit standard metal working equipment fitted with inexpensive devices and tools. However, scaling up the processes to handle large billets and achieve large tonnage production is difficult. In the near future, medium and small-scale industrial production only is likely. Friction stir process, a solid state technique for joining similar or dissimilar materials of equal or different thickness, has some key metallurgical, environmental and energy benefits. It is already being considered for applications in aerospace and automotive industries. Significant improvements in surface properties and superplastic flow have been established in friction stir processed materials. Velocity of tool movement and power input needed for fast rotation of the tool are the major variables. Since significant temperature rise is there during processing, in a proper analysis, the boundary conditions arising from thermal and mechanical constraints have to be satisfied simultaneously, which is an extremely difficult. A few key issues have to be addressed before large-scale production can be attempted. An integral approach that takes into account the total system of material, design, mechanics and component forming is likely to lead to industrially relevant solutions
    corecore