research

The hypothesis of path integral duality II: corrections to quantum field theoretic results

Abstract

In the path integral expression for a Feynman propagator of a spinless particle of mass mm, the path integral amplitude for a path of proper length R(x,xgμν){\cal R}(x,x'| g_{\mu\nu}) connecting events xx and xx' in a spacetime described by the metric tensor gμνg_{\mu\nu} is exp[mR(x,xgμν)]\exp-[m {\cal R}(x,x'| g_{\mu\nu})]. In a recent paper, assuming the path integral amplitude to be invariant under the duality transformation R(LP2/R){\cal R} \to (L_P^2/{\cal R}), Padmanabhan has evaluated the modified Feynman propagator in an arbitrary curved spacetime. He finds that the essential feature of this `principle of path integral duality' is that the Euclidean proper distance (Δx)2(\Delta x)^2 between two infinitesimally separated spacetime events is replaced by [(Δx)2+4LP2][(\Delta x)^2 + 4L_P^2 ]. In other words, under the duality principle the spacetime behaves as though it has a `zero-point length' LPL_P, a feature that is expected to arise in a quantum theory of gravity. In the Schwinger's proper time description of the Feynman propagator, the weightage factor for a path with a proper time ss is exp(m2s)\exp-(m^2s). Invoking Padmanabhan's `principle of path integral duality' corresponds to modifying the weightage factor exp(m2s)\exp-(m^2s) to exp[m2s+(LP2/s)]\exp-[m^2s + (L_P^2/s)]. In this paper, we use this modified weightage factor in Schwinger's proper time formalism to evaluate the quantum gravitational corrections to some of the standard quantum field theoretic results in flat and curved spacetimes. We find that the extra factor exp(LP2/s)\exp-(L_P^2/s) acts as a regulator at the Planck scale thereby `removing' the divergences that otherwise appear in the theory. Finally, we discuss the wider implications of our analysis.Comment: 26 pages, Revte

    Similar works