1,984 research outputs found

    Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Get PDF
    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described

    Scalar Field Dark Energy Perturbations and their Scale Dependence

    Full text link
    We estimate the amplitude of perturbation in dark energy at different length scales for a quintessence model with an exponential potential. It is shown that on length scales much smaller than hubble radius, perturbation in dark energy is negligible in comparison to that in in dark matter. However, on scales comparable to the hubble radius (λp>1000Mpc\lambda_{p}>1000\mathrm{Mpc}) the perturbation in dark energy in general cannot be neglected. As compared to the Λ\LambdaCDM model, large scale matter power spectrum is suppressed in a generic quintessence dark energy model. We show that on scales λp<1000Mpc\lambda_{p} < 1000\mathrm{Mpc}, this suppression is primarily due to different background evolution compared to Λ\LambdaCDM model. However, on much larger scales perturbation in dark energy can effect matter power spectrum significantly. Hence this analysis can act as a discriminator between Λ\LambdaCDM model and other generic dark energy models with wde≠−1w_{de} \neq -1.Comment: 12 pages, 13 figures, added new section, accepted for publication in Phys. Rev.

    Thermodynamic Interpretation of Field Equations at Horizon of BTZ Black Hole

    Full text link
    A spacetime horizon comprising with a black hole singularity acts like a boundary of a thermal system associated with the notions of temperature and entropy. In case of static metric of BTZ black hole, the field equations near horizon boundary can be expressed as a thermal identity dE=TdS+PrdAdE = TdS + P_{r}dA, where E=ME = M is the mass of BTZ black hole, dAdA is the change in the area of the black hole horizon when the horizon is displaced infinitesimally small, PrP_{r} is the radial pressure provided by the source of Einstein equations, S=4πaS= 4\pi a is the entropy and T=κ/2πT = \kappa / 2\pi is the Hawking temperature associated with the horizon. This approach is studied further to generalize it for non-static BTZ black hole and show that it is also possible to interpret the field equation near horizon as a thermodynamic identity dE=TdS+PrdA+Ω+dJdE = TdS + P_{r}dA + \Omega_{+} dJ, where Ω+\Omega_{+} is the angular velocity and JJ is the angular momentum of BTZ black hole. These results indicate that the field equations for BTZ black hole possess intrinsic thermodynamic properties near horizon.Comment: 8 page

    Effective Values of Komar Conserved Quantities and Their Applications

    Full text link
    We calculate the effective Komar angular momentum for the Kerr-Newman (KN) black hole. This result is valid at any radial distance on and outside the black hole event horizon. The effcetive values of mass and angular momentum are then used to derive an identity (Kχμ=2STK_{\chi^{\mu}}=2ST) which relates the Komar conserved charge (KχμK_{\chi^{\mu}}) corresponding to the null Killing vector (χμ\chi^{\mu}) with the thermodynamic quantities of this black hole. As an application of this identity the generalised Smarr formula for this black hole is derived. This establishes the fact that the above identity is a local form of the inherently non-local generalised Smarr formula.Comment: v3, minor modifications over v2; LaTex, 9 pages, no figures, to appear in Int. Jour. Theo. Phy

    Fingerprinting dark energy

    Full text link
    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called "dark energy". We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.Comment: 11 pages, 5 figures, minor changes to match published versio

    Quantum cosmology of a classically constrained nonsingular Universe

    Get PDF
    The quantum cosmological version of a nonsingular Universe presented by Mukhanov and Brandenberger in the early nineties has been developed and the Hamilton Jacobi equation has been found under semiclassical (WKB) approximation. It has been pointed out that, parameterization of classical trajectories with semiclassical time parameter, for such a classically constrained system, is a nontrivial task and requires Lagrangian formulation rather than the Hamiltonian formalism.Comment: 15 page

    Physical approximations for the nonlinear evolution of perturbations in dark energy scenarios

    Full text link
    The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy as well, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model, and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.Comment: 15 pages, 2 figure

    Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric

    Full text link
    In case of spacetimes with single horizon, there exist several well-established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.Comment: 12 page

    Complex Effective Path: A Semi-Classical Probe of Quantum Effects

    Full text link
    We discuss the notion of an effective, average, quantum mechanical path which is a solution of the dynamical equations obtained by extremizing the quantum effective action. Since the effective action can, in general, be complex, the effective path will also, in general, be complex. The imaginary part of the effective action is known to be related to the probability of particle creation by an external source and hence we expect the imaginary part of the effective path also to contain information about particle creation. We try to identify such features using simple examples including that of effective path through the black hole horizon leading to thermal radiation. Implications of this approach are discussed.Comment: 20 pages; no figures; to appear in Phys.Rev.

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
    • …
    corecore