863 research outputs found

    The Optical Gravitational Lensing Experiment. Is Interstellar Extinction Toward the Galactic Center Anomalous?

    Full text link
    Photometry of the Galactic bulge, collected during the OGLE-II microlensing search, indicates high and non-uniform interstellar extinction toward the observed fields. We use the mean I-band magnitude and V-I color of red clump stars as a tracer of interstellar extinction toward four small regions of the Galactic bulge with highly variable reddening. Similar test is performed for the most reddened region observed in the LMC. We find that the slope of the location of red clump stars in the color-magnitude diagrams (CMDs) in the Galactic bulge is significantly smaller than the slope of the reddening line following the standard extinction law (R_V=3.1) for approximations of the extinction curve by both Cardelli, Clayton and Mathis (1989, CCM89) and Fitzpatrick (1999, F99). The differences are much larger for the CCM89 approximation which, on the other hand, indicates the same slopes for the control field in the LMC, contrary to the F99 approximation. We discuss possible systematic effects that could cause the observed discrepancy. Anomalous extinction toward the Galactic bulge seems to be the most natural explanation. Our data indicate that, generally, the ratio of the total to selective absorption, R_VI, is much smaller toward the Galactic bulge than the value corresponding to the standard extinction curve (R_V=3.1). However, R_VI varies from one line-of-sight to another. Our results explain why the red clump and RR Lyr stars in the Baade's window dereddened with standard value of R_VI are redder compared to those of the local population.Comment: 16 pages. Accepted for publication in ApJ. Major changes include: comparison of the OGLE-II photometry with other data, additional comparison of the observed reddening line with that resulting from approximation of the standard extinction curve by Fitzpatrick (1999

    Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts

    Get PDF
    The merger of compact binaries, especially black holes and neutron stars, is frequently invoked to explain gamma-ray bursts (GRB's). In this paper, we present three dimensional hydrodynamical simulations of the relatively neglected mergers of white dwarfs and black holes. During the merger, the white dwarf is tidally disrupted and sheared into an accretion disk. Nuclear reactions are followed and the energy release is negligible. Peak accretion rates are ~0.05 Msun/s (less for lower mass white dwarfs) lasting for approximately a minute. Many of the disk parameters can be explained by a simple analytic model which we derive and compare to our simulations. This model can be used to predict accretion rates for white dwarf and black hole (or neutron star) masses which are not simulated in this paper. Although the mergers studied here create disks with larger radii, and longer accretion times than those from the merger of double neutron stars, a larger fraction of the merging star's mass becomes part of the disk. Thus the merger of a white dwarf and a black hole could produce a long duration GRB. The event rate of these mergers may be as high as 1/Myr per galaxy.Comment: 17 pages text + 9 figures, minor corrections to text and tables, added references, accepted by Ap

    Large Surveys in Cosmology: The Changing Sociology

    Get PDF
    Galaxy redshift surveys and Cosmic Microwave Background experiments are undertaken with larger and larger teams, in a fashion reminiscent of particle physics experiments and the human genome projects. We discuss the role of young researchers, the issue of multiple authorship, and ways to communicate effectively in teams of tens to hundreds of collaborators.Comment: Invited article for "Organizations and Strategies in Astronomy II", ed. A. Heck, Kluwer Acad. Publ., in press (7 pages, no figures

    Neutrino Cooled Disk and Its Stability

    Full text link
    We investigate the structure and stability of hypercritical accretion flows around stellar-mass black holes, taking into account neutrino cooling, lepton conservation, and firstly a realistic equation of state in order to properly treat the dissociation of nuclei. We obtain the radial distributions of physical properties, such as density, temperature and electron fraction, for various mass accretion rates 0.1∌10M⊙s−10.1\sim 10M_{\odot}{\rm s}^{-1}. We find that, depending on mass accretion rates, different physics affect considerably the structure of the disk; most important physics is (1) the photodissociation of nuclei around r∌100rgr\sim 100r_g for relatively low mass accretion rates (M˙∌0.01−0.1M⊙s−1\dot{M}\sim 0.01-0.1M_{\odot} {\rm s}^{-1}), (2) efficient neutrino cooling around r∌10−100rgr\sim 10-100r_g for moderately high mass accretion rate (M˙∌0.2−1.0M⊙s−1\dot{M}\sim 0.2-1.0M_{\odot}{\rm s}^{-1}), and (3) neutrino trapping (r∌3−10rgr\sim 3-10r_g) for very high mass accretion rate (M˙≳2.0M⊙s−1\dot{M}\gtrsim 2.0M_{\odot}{\rm s}^{-1}). We also investigate the stability of hypercritical accretion flows by drawing the thermal equilibrium curves, and find that efficient neutrino cooling makes the accretion flows rather stable against both thermal and viscous modes.Comment: 26 pages, 28 figures, Accepted for publication in Ap

    Nucleation of quark matter in neutron stars cores

    Get PDF
    We consider the general conditions of quark droplets formation in high density neutron matter. The growth of the quark bubble (assumed to contain a sufficiently large number of particles) can be described by means of a Fokker-Planck equation. The dynamics of the nucleation essentially depends on the physical properties of the medium it takes place. The conditions for quark bubble formation are analyzed within the frameworks of both dissipative and non-dissipative (with zero bulk and shear viscosity coefficients) approaches. The conversion time of the neutron star to a quark star is obtained as a function of the equation of state of the neutron matter and of the microscopic parameters of the quark nuclei. As an application of the obtained formalism we analyze the first order phase transition from neutron matter to quark matter in rapidly rotating neutron stars cores, triggered by the gravitational energy released during the spinning down of the neutron star. The endothermic conversion process, via gravitational energy absorption, could take place, in a very short time interval, of the order of few tens seconds, in a class of dense compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap

    Carbon-poor stellar cores as supernova progenitors

    Full text link
    Exploring stellar models which ignite carbon off-center (in the mass range of about 1.05 - 1.25 Msun, depending on the carbon mass fraction) we find that they may present an interesting SN I progenitor scenario, since whereas in the standard scenario runaway always takes place at the same density of about 2 X 10^9 gr/cm^3, in our case, due to the small amount of carbon ignited, we get a whole range of densities from 1 X 10^9 up to 6 X 10^9 gr/cm^3. These results could contribute in resolving the emerging recognition that at least some diversity among SNe I exists, since runaway at various central densities is expected to yield various outcomes in terms of the velocities and composition of the ejecta, which should be modeled and compared to observations.Comment: 49 pages, 20 figure

    Time variability of accretion flows: effects of the adiabatic index and gas temperature

    Full text link
    We report on next phase of our study of rotating accretion flows onto black holes. We consider hydrodynamical (HD) accretion flows with a spherically symmetric density distribution at the outer boundary but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum. We study accretion flows by means of numerical two-dimensional, axisymmetric, HD simulations for variety of the adiabatic index, γ\gamma and the gas temperature at infinity, c∞c_\infty. Our work is an extension of work done by Proga & Begelman who consider models for only γ=5/3\gamma=5/3. Our main result is that the flow properties such as the topology of the sonic surface and time behavior strongly depend on γ\gamma but little on c∞c_\infty. In particular, for 1<γ<5/31 < \gamma < 5/3, the mass accretion rate shows large amplitude, slow time-variability which is a result of mixing between slow and fast rotating gas. This temporal behavior differs significantly from that in models with \gamma\simless 5/3 where the accretion rate is relatively constant and from that in models with \gamma\simgreat 1 where the accretion exhibits small amplitude quasi-periodic oscillations. The key parameter responsible for the differences is the sound speed of the accretion flow which in turn determines whether the flow is dominated by gas pressure, radiation pressure or rotation. Despite these differences the time-averaged mass accretion rate in units of the corresponding Bondi rate is a weak function of γ\gamma and c∞c_\infty.Comment: 31 pages, 14 figures, accepted for publication in ApJ, for full resolution version goto http://users.camk.edu.pl/mmosc/ms.pd

    Viscous Torque and Dissipation in the Inner Region of a Thin Accretion Disk: Implications for Measuring Black Hole Spin

    Full text link
    We consider a simple Newtonian model of a steady accretion disk around a black hole. The model is based on height-integrated hydrodynamic equations, alpha-viscosity, and a pseudo-Newtonian potential that results in an innermost stable circular orbit (ISCO) that closely approximates the one predicted by GR. We find that the hydrodynamic models exhibit increasing deviations from the standard disk model of Shakura & Sunyaev as disk thickness H/R or the value of alpha increases. The latter is an analytical model in which the viscous torque is assumed to vanish at the ISCO. We consider the implications of the results for attempts to estimate black hole spin by using the standard disk model to fit continuum spectra of black hole accretion disks. We find that the error in the spin estimate is quite modest so long as H/R < 0.1 and alpha < 0.2. At worst the error in the estimated value of the spin parameter is 0.1 for a non-spinning black hole; the error is much less for a rapidly spinning hole. We also consider the density and disk thickness contrast between the gas in the disk and that inside the ISCO. The contrast needs to be large if black hole spin is to be successfully estimated by fitting the relativistically-broadened X-ray line profile of fluorescent iron emission from reflection off an accretion disk. In our hydrodynamic models, the contrast in density and thickness is low when H/R>0.1, sugesting that the iron line technique may be most reliable in extemely thin disks. We caution that these results have been obtained with a viscous hydrodynamic model and need to be confirmed with MHD simulations of radiatively cooled thin disks.Comment: 32 pages, 10 figures; accepted by Ap

    An Ultraluminous Supersoft X-ray Source in M81: An Intermediate-Mass Black Hole?

    Full text link
    Ultraluminous supersoft X-ray sources (ULSSS) exhibit supersoft spectra with blackbody temperatures of 50-100 eV and bolometric luminosities above 103910^{39} erg s−1^{-1}, and are possibly intermediate mass black holes (IMBHs) of ≄103M⊙\ge10^3 M_\odot or massive white dwarfs that are progenitors of type Ia supernovae. In this letter we report our optical studies of such a source in M81, M81-ULS1, with HST archive observations. M81-ULS1 is identified with a point-like object, the spectral energy distribution of which reveals a blue component in addition to the companion of an AGB star. The blue component is consistent with the power-law as expected from the geometrically-thin accretion disk around an IMBH accretor, but inconsistent with the power-law as expected from the X-ray irradiated flared accretion disk around a white dwarf accretor. This result is strong evidence that M81-ULS1 is an IMBH instead of a white dwarf.Comment: 12 pages, 1 table, 3 figure

    The Convective Urca Process with Implicit Two-Dimensional Hydrodynamics

    Full text link
    Consideration of the role of the convective flux in the thermodymics of the convective Urca neutrino loss process in degenerate, convective, quasi-static, carbon-burning cores shows that the convective Urca process slows down the convective current around the Urca-shell, but, unlike the "thermal" Urca process, does not reduce the entropy or temperature for a given convective volume. Here we demonstrate these effects with two-dimensional numerical hydrodynamical calculations. These two-dimensional implicit hydrodynamics calculations invoke an artificial speeding up of the nuclear and weak rates. They should thus be regarded as indicative, but still qualitative. We find that, compared to a case with no Urca-active nuclei, the case with Urca effects leads to a higher entropy in the convective core because the energy released by nuclear burning is confined to a smaller volume by the effective boundary at the Urca shell. All else being equal, this will tend to accelerate the progression to dynamical runaway. We discuss the open issues regarding the impact of the convective Urca process on the evolution to the "smoldering phase" and then to dynamical runaway.Comment: 22 pages, 11 figures, accepted for publication in the Astrophysical Journa
    • 

    corecore