916 research outputs found

    An upper limit on the X-ray luminosity of the black hole - microlens OGLE-1999-BUL-32

    Get PDF
    We present an upper limit on the 3--20 keV X-ray flux from the black hole - microlens OGLE-1999-BUL-32, based on RXTE/PCA scans over the Galactic Center region in 1999-2000. It is shown that the X-ray luminosity of the black hole did not exceed L(3-20 keV)<3e33(d/1kpc)^2 ergs/s (where d is the distance to the black hole). Near the maximum of the background star amplification by the microlens (July 6, 1999), the upper limit on the X-ray flux corresponds to an X-ray luminosity L(3-20 keV)<7e33(d/1kpc)^2 ergs/s.Comment: 4 pages, 3 figures. Accepted for publication in Astronomy Letter

    The Convective Urca Process with Implicit Two-Dimensional Hydrodynamics

    Full text link
    Consideration of the role of the convective flux in the thermodymics of the convective Urca neutrino loss process in degenerate, convective, quasi-static, carbon-burning cores shows that the convective Urca process slows down the convective current around the Urca-shell, but, unlike the "thermal" Urca process, does not reduce the entropy or temperature for a given convective volume. Here we demonstrate these effects with two-dimensional numerical hydrodynamical calculations. These two-dimensional implicit hydrodynamics calculations invoke an artificial speeding up of the nuclear and weak rates. They should thus be regarded as indicative, but still qualitative. We find that, compared to a case with no Urca-active nuclei, the case with Urca effects leads to a higher entropy in the convective core because the energy released by nuclear burning is confined to a smaller volume by the effective boundary at the Urca shell. All else being equal, this will tend to accelerate the progression to dynamical runaway. We discuss the open issues regarding the impact of the convective Urca process on the evolution to the "smoldering phase" and then to dynamical runaway.Comment: 22 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts

    Get PDF
    The merger of compact binaries, especially black holes and neutron stars, is frequently invoked to explain gamma-ray bursts (GRB's). In this paper, we present three dimensional hydrodynamical simulations of the relatively neglected mergers of white dwarfs and black holes. During the merger, the white dwarf is tidally disrupted and sheared into an accretion disk. Nuclear reactions are followed and the energy release is negligible. Peak accretion rates are ~0.05 Msun/s (less for lower mass white dwarfs) lasting for approximately a minute. Many of the disk parameters can be explained by a simple analytic model which we derive and compare to our simulations. This model can be used to predict accretion rates for white dwarf and black hole (or neutron star) masses which are not simulated in this paper. Although the mergers studied here create disks with larger radii, and longer accretion times than those from the merger of double neutron stars, a larger fraction of the merging star's mass becomes part of the disk. Thus the merger of a white dwarf and a black hole could produce a long duration GRB. The event rate of these mergers may be as high as 1/Myr per galaxy.Comment: 17 pages text + 9 figures, minor corrections to text and tables, added references, accepted by Ap

    The Role of Kinetic Energy Flux in the Convective Urca Process

    Get PDF
    The previous analysis of the convective Urca neutrino loss process in degenerate, convective, quasi-static, carbon-burning cores by Barkat and Wheeler omitted specific consideration of the role of the kinetic energy flux. The arguments of Barkat and Wheeler that steady-state composition gradients exist are correct, but chemical equilibrium does not result in net cooling. Barkat and Wheeler included a "work" term that effectively removed energy from the total energy budget that could only have come from the kinetic energy, which must remain positive. Consideration of the kinetic energy in the thermodynamics of the convective Urca process shows that the convective Urca neutrinos reduce the rate of increase of entropy that would otherwise be associated with the input of nuclear energy and slow down the convective current, but, unlike the "thermal" Urca process do not reduce the entropy or temperature.Comment: 16 pages, AAS LaTex, in press, Astrophysical Journal, September 20, Vol 52

    A gamma ray burst with small contamination

    Full text link
    We present a scenario (SupraNova) for the formation of GRBs occurring when a supramassive neutron star (SMNS) loses so much angular momentum that centrifugal support against self--gravity becomes impossible, and the star implodes to a black hole. This may be the baryon--cleanest environment proposed so far, because the SN explosion in which the SMNS formed swept the medium surrounding the remnant, and the quickly spinning remnant loses energy through magnetic dipole radiation at a rate exceeding its Eddington luminosity by some four orders of magnitude. The implosion is adiabatic because neutrinos have short mean free paths, and silent, given the prompt collapse of the polar caps. However, a mass ~ 0.1 M_solar in the equatorial belt can easily reach centrifugal equilibrium. The mechanism of energy extraction is via the conversion of the Poynting flux (due to the large--scale magnetic field locked into the minitorus) into a magnetized relativistic wind. Occasionally this model will produce quickly decaying, or non--detectable afterglows.Comment: To appear in The Astrophysical Journal Letters. AASTeX LateX, no figure

    Global General Relativistic Magnetohydrodynamic Simulations of Accretion Tori

    Full text link
    This paper presents an initial survey of the properties of accretion flows in the Kerr metric from three-dimensional, general relativistic magnetohydrodynamic simulations of accretion tori. We consider three fiducial models of tori around rotating, both prograde and retrograde, and nonrotating black holes; these three fiducial models are also contrasted with axisymmetric simulations and a pseudo-Newtonian simulation with equivalent initial conditions to delineate the limitations of these approximations.Comment: Submitted to ApJ. 30 pages, 21 figures. Animations and high-resolution version of figures available at http://www.astro.virginia.edu/~jd5

    IAC-DIDAS-N: A Dynamic Interactive Decision Analysis and Support System for Multicriteria Analysis of Nonlinear Models with Nonlinear Model Generator Supporting Model Analysis

    Get PDF
    This paper is one of the series of 11 Working Papers presenting the software for interactive decision support and software tools for developing decision support systems. These products constitute the outcome of the contracted study agreement between the System and Decision Sciences Program at IIASA and several Polish scientific institutions. The theoretical part of these results is presented in the IIASA Working Paper WP-88-071 entitled "Theory, Software and Testing Examples in Decision Support Systems". This volume contains the theoretical and methodological backgrounds of the software systems developed within the project. This paper presents the user documentation for decision analysis and support systems of DIDAS family designed for supporting decision problems when the model of the system under study can be formulated in terms of set of nonlinear equations. The program presented in the paper, called IAC-DIDAS-N is provided with a nonlinear model generator and editor that support definition, edition and symbolic differentiation of nonlinear models for multiobjective decision analysis. A specially introduced standard of defining nonlinear programming models for multiobjective optimization helps to connect the model generator with other parts of the system. Optimization runs involved in interactive, multiobjective decision analysis are performed by a new version of nonlinear programming algorithm specially adapted for multiobjective problems. This algorithm is based on shifted penalty functions and projected conjugate directions techniques. An attachment to this paper presents user documentation for a pilot version of a nonlinear model generator with facilities for symbolic differentiation and other means of fundamental model analysis

    Nearby Microlensing Events - Identification of the Candidates for the SIM

    Get PDF
    The Space Interferometry Mission (SIM) is the instrument of choice when it comes to observing astrometric microlensing events where nearby, usually high-proper-motion stars (``lenses''), pass in front of more distant stars (``sources''). Each such encounter produces a deflection in the source's apparent position that when observed by SIM can lead to a precise mass determination of the nearby lens star. We search for lens-source encounters during the 2005-2015 period using Hipparcos, ACT and NLTT to select lenses, and USNO-A2.0 to search for the corresponding sources, and rank these by the SIM time required for a 1% mass measurement. For Hipparcos and ACT lenses, the lens distance and lens-source impact parameter are precisely determined so the events are well characterized. We present 32 candidates beginning with a 61 Cyg A event in 2012 that requires only a few minutes of SIM time. Proxima Centauri and Barnard's star each generate several events. For NLTT lenses, the distance is known only to a factor of 3, and the impact parameter only to 1''. Together, these produce uncertainties of a factor ~10 in the amount of SIM time required. We present a list of 146 NLTT candidates and show how single-epoch CCD photometry of the candidates could reduce the uncertainty in SIM time to a factor of ~1.5.Comment: ApJ accepted, 31 pages (inc. 5 tables), 5 figures. t SIM refine

    The Influences of Outflow on the Dynamics of Inflow

    Full text link
    Both numerical simulations and observations indicate that in an advection-dominated accretion flow most of the accretion material supplied at the outer boundary will not reach the inner boundary. Rather, they are lost via outflow. Previously, the influence of outflow on the dynamics of inflow is taken into account only by adopting a radius-dependent mass accretion rate M˙=M˙0(r/rout)s\dot{M}=\dot{M}_0 (r/r_{\rm out})^s with s>0s>0. In this paper, based on a 1.5 dimensional description to the accretion flow, we investigate this problem in more detail by considering the interchange of mass, radial and azimuthal momentum, and the energy between the outflow and inflow. The physical quantities of the outflow is parameterized based on our current understandings to the properties of outflow mainly from numerical simulations of accretion flows. Our results indicate that under reasonable assumptions to the properties of outflow, the main influence of outflow has been properly included by adopting M˙=M˙0(r/rout)s\dot{M}=\dot{M}_0 (r/r_{\rm out})^s.Comment: 16 pages, 5 figures. accepted for publication in Ap

    Observational Prospects for Afterglows of Short Duration Gamma-ray Bursts

    Get PDF
    If the efficiency for producing Îł\gamma-rays is the same in short duration (\siml 2 s) Gamma-Ray Bursts (GRBs) as in long duration GRBs, then the average kinetic energy of short GRBs must be ∌20\sim 20 times less than that of long GRBs. Assuming further that the relativistic shocks in short and long duration GRBs have similar parameters, we show that the afterglows of short GRBs will be on average 10--40 times dimmer than those of long GRBs. We find that the afterglow of a typical short GRB will be below the detection limit (\siml 10 \microJy) of searches at radio frequencies. The afterglow would be difficult to observe also in the optical, where we predict R \simg 23 a few hours after the burst. The radio and optical afterglow would be even fainter if short GRBs occur in a low-density medium, as expected in NS-NS and NS-BH merger models. The best prospects for detecting short-GRB afterglows are with early (\siml 1 day) observations in X-rays.Comment: 5 pages, 2 figures, submitted to ApJ lette
    • 

    corecore