632 research outputs found

    Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Benthic species of algae and cyanobacteria (i.e., those that grow on surfaces), may provide potential advantages over planktonic species for some commercial-scale biotechnological applications. A multitude of different designs of photobioreactor (PBR) are available for growing planktonic species but to date there has been little research on PBR for benthic algae or cyanobacteria. One notable advantage of some benthic cyanobacterial species is that during their growth cycle they become positively buoyant, detach from the growth surface and form floating mats. This 'self-harvesting' capability could be advantageous in commercial PBRs as it would greatly reduce dewatering costs. In this study we compared the growth rates and efficiency of 'self-harvesting' among three species of benthic cyanobacteria; Phormidium autumnale; Phormidium murrayi and Planktothrix sp.. Phormidium autumnale produced the greatest biomass and formed cohesive mats once detached. Using this strain and an optimised MLA media, a variety of geometries of benthic PBRs (bPBRs) were trialed. The geometry and composition of growth surface had a marked effect on cyanobacterial growth. The highest biomass was achieved in a bPBR comprising of a vertical polyethylene bag with loops of silicone tubing to provide additional growth surfaces. The productivity achieved in this bPBR was a similar order of magnitude as planktonic species, with the additional advantage that towards the end of the exponential phase the bulk of the biomass detached forming a dense mat at the surface of the medium.Peer Reviewe

    Sobre a RBSO

    Full text link

    Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction.

    Get PDF
    Aims: Inhibition of neprilysin, an enzyme degrading natriuretic and other vasoactive peptides, is beneficial in heart failure with reduced ejection fraction (HFrEF), as shown in PARADIGM-HF which compared the angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan with enalapril. As neprilysin is also one of many enzymes clearing amyloid-β peptides from the brain, there is a theoretical concern about the long-term effects of sacubitril/valsartan on cognition. Therefore, we have examined dementia-related adverse effects (AEs) in PARADIGM-HF and placed these findings in the context of other recently conducted HFrEF trials. Methods and results: In PARADIGM-HF, patients with symptomatic HFrEF were randomized to sacubitril/valsartan 97/103 mg b.i.d. or enalapril 10 mg b.i.d. in a 1:1 ratio. We systematically searched AE reports, coded using the Medical Dictionary for Regulatory Activities (MedDRA), using Standardized MedDRA Queries (SMQs) with ‘broad’ and ‘narrow’ preferred terms related to dementia. In PARADIGM-HF, 8399 patients aged 18–96 years were randomized and followed for a median of 2.25 years (up to 4.3 years). The narrow SMQ search identified 27 dementia-related AEs: 15 (0.36%) on enalapril and 12 (0.29%) on sacubitril/valsartan [hazard ratio (HR) 0.73, 95% confidence interval (CI) 0.33–1.59]. The broad search identified 97 (2.30%) and 104 (2.48%) AEs (HR 1.01, 95% CI 0.75–1.37), respectively. The rates of dementia-related AEs in both treatment groups in PARADIGM-HF were similar to those in three other recent trials in HFrEF. Conclusion: We found no evidence that sacubitril/valsartan, compared with enalapril, increased dementia-related AEs, although longer follow-up may be necessary to detect such a signal and more sensitive tools are needed to detect lesser degrees of cognitive impairment. Further studies to address this question are warranted

    Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome

    Get PDF
    The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring

    Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals

    Get PDF
    peer reviewedSeaweeds have a long history of use as food, as flavouring agents, and find use in traditional folk medicine. Seaweed products range from food, feed, and dietary supplements to pharmaceuticals, and from bioenergy intermediates to materials. At present, 98% of the seaweed required by the seaweed industry is provided by five genera and only ten species. The two brown kelp seaweeds Laminaria digitata, a native Irish species, and Macrocystis pyrifera, a native New Zealand species, are not included in these eleven species, although they have been used as dietary supplements and as animal and fish feed. The properties associated with the polysaccharides and proteins from these two species have resulted in increased interest in them, enabling their use as functional foods. Improvements and optimisations in aquaculture methods and bioproduct extractions are essential to realise the commercial potential of these seaweeds. Recent advances in optimising these processes are outlined in this review, as well as potential future applications of L. digitata and, to a greater extent, M. pyrifera which, to date, has been predominately only wild-harvested. These include bio-refinery processing to produce ingredients for nutricosmetics, functional foods, cosmeceuticals, and bioplastics. Areas that currently limit the commercial potential of these two species are highlightedHorizon 202

    Contemporary characteristics and outcomes in chagasic heart failure compared with other nonischemic and ischemic cardiomyopathy

    Get PDF
    Background: Chagas’ disease is an important cause of cardiomyopathy in Latin America. We aimed to compare clinical characteristics and outcomes in patients with heart failure (HF) with reduced ejection fraction caused by Chagas’ disease, with other etiologies, in the era of modern HF therapies. Methods and Results: This study included 2552 Latin American patients randomized in the PARADIGM-HF (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) and ATMOSPHERE (Aliskiren Trial to Minimize Outcomes in Patients With Heart Failure) trials. The investigator-reported etiology was categorized as Chagasic, other nonischemic, or ischemic cardiomyopathy. The outcomes of interest included the composite of cardiovascular death or HF hospitalization and its components and death from any cause. Unadjusted and adjusted Cox proportional hazards models were performed to compare outcomes by pathogenesis. There were 195 patients with Chagasic HF with reduced ejection fraction, 1300 with other nonischemic cardiomyopathy, and 1057 with ischemic cardiomyopathy. Compared with other etiologies, Chagasic patients were more often female, younger, and had lower prevalence of hypertension, diabetes mellitus, and renal impairment (but had higher prevalence of stroke and pacemaker implantation) and had worse health-related quality of life. The rates of the composite outcome were 17.2, 12.5, and 11.4 per 100 person-years for Chagasic, other nonischemic, and ischemic patients, respectively—adjusted hazard ratio for Chagasic versus other nonischemic: 1.49 (95% confidence interval, 1.15–1.94; P=0.003) and Chagasic versus ischemic: 1.55 (1.18–2.04; P=0.002). The rates of all-cause mortality were also higher. Conclusions: Despite younger age, less comorbidity, and comprehensive use of conventional HF therapies, patients with Chagasic HF with reduced ejection fraction continue to have worse quality of life and higher hospitalization and mortality rates compared with other etiologies. Clinical Trial Registration: PARADIGM-HF: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01035255; ATMOSPHERE: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00853658

    A generalized conformational energy function of DNA derived from molecular dynamics simulations

    Get PDF
    Proteins recognize DNA sequences by two different mechanisms. The first is direct readout, in which recognition is mediated by direct interactions between the protein and the DNA bases. The second is indirect readout, which is caused by the dependence of conformation and the deformability of the DNA structure on the sequence. Various energy functions have been proposed to evaluate the contribution of indirect readout to the free-energy changes in complex formations. We developed a new generalized energy function to estimate the dependence of the deformability of DNA on the sequence. This function was derived from molecular dynamics simulations previously conducted on B-DNA dodecamers, each of which had one possible tetramer sequence embedded at its center. By taking the logarithm of the probability distribution function (PDF) for the base-step parameters of the central base-pair step of the tetramer, its ability to distinguish the native sequence from random ones was superior to that with the previous method that approximated the energy function in harmonic form. From a comparison of the energy profiles calculated with these two methods, we found that the harmonic approximation caused significant errors in the conformational energies of the tetramers that adopted multiple stable conformations

    Harmonization Across Imaging Locations(HAIL): One-Shot Learning for Brain MRI

    Full text link
    For machine learning-based prognosis and diagnosis of rare diseases, such as pediatric brain tumors, it is necessary to gather medical imaging data from multiple clinical sites that may use different devices and protocols. Deep learning-driven harmonization of radiologic images relies on generative adversarial networks (GANs). However, GANs notoriously generate pseudo structures that do not exist in the original training data, a phenomenon known as "hallucination". To prevent hallucination in medical imaging, such as magnetic resonance images (MRI) of the brain, we propose a one-shot learning method where we utilize neural style transfer for harmonization. At test time, the method uses one image from a clinical site to generate an image that matches the intensity scale of the collaborating sites. Our approach combines learning a feature extractor, neural style transfer, and adaptive instance normalization. We further propose a novel strategy to evaluate the effectiveness of image harmonization approaches with evaluation metrics that both measure image style harmonization and assess the preservation of anatomical structures. Experimental results demonstrate the effectiveness of our method in preserving patient anatomy while adjusting the image intensities to a new clinical site. Our general harmonization model can be used on unseen data from new sites, making it a valuable tool for real-world medical applications and clinical trials.Comment: Under revie
    corecore