1,493 research outputs found

    A subsurface particle maximum layer and enhanced microbial activity in the secondary nitrite maximum of the northeastern tropical Pacific Ocean

    Get PDF
    Profiles of light transmission, dissolved oxygen, dissolved nutrients, electron transport system (ETS) activity, temperature and salinity were made in the northeastern tropical Pacific Ocean. A particle maximum at 150–300 m within the oxygen minimum and secondary nitrite maximum was associated with the salinity maximum of Subtropical Subsurface Water. A subsurface maximum in ETS activity was also found to be associated with the secondary nitrite maximum and the particle maximum. Persistence of these features at a constant depth and their location within a minimum in vertical static stability suggest an advective and/or in situ origin for the particles and an in situ development of the associated chemical and biochemical extremes

    Electron-beam-induced shift in the apparent position of a pinned vortex in a thin superconducting film

    Full text link
    When an electron beam strikes a superconducting thin film near a pinned vortex, it locally increases the temperature-dependent London penetration depth and perturbs the circulating supercurrent, thereby distorting the vortex's magnetic field toward the heated spot. This phenomenon has been used to visualize vortices pinned in SQUIDs using low-temperature scanning electron microscopy. In this paper I develop a quantitative theory to calculate the displacement of the vortex-generated magnetic-flux distribution as a function of the distance of the beam spot from the vortex core. The results are calculated using four different models for the spatial distribution of the thermal power deposited by the electron beam.Comment: 9 pages, 6 figures, resubmitted to PRB with referee-suggested revisions, includes new paragraph on numerical evaluatio

    Submillimeter satellite radiometer Final engineering report

    Get PDF
    All solid-state superheterodyne Dicke radiometer for submillimeter wavelength

    Unused Medication Collection: An Emerging Service-Learning Experience for Pharmacy Students

    Get PDF
    While the U.S. makes up around 5% of the world’s population, we consume approximately 75% of the world’s prescription drugs—well over 4 billion prescriptions per year. Approximately one third of those are never used, creating an array of public health challenges. These challenges include land and water pollution; unintentional inappropriate use and unintentional human, pet, and wildlife poisonings; and intentional drug abuse and diversion. Misuse of prescription drugs now exceeds that of all illegal drugs combined. Reducing the number of medications prescribed is of primary importance, as well as collecting unnecessary medications from households and disposing of them through environmentally friendly methods. There are a variety of medication collection methods, including public take-back events, permanent drop boxes at pharmacies, collection by police departments, as well as prepaid mailers available from some pharmacies and the Internet. When bulk medication is collected at take-back events or by police departments, it is generally quantified as “pounds collected,” with no determination of specific medications collected, quantities of prescribed medications left unused, or length of household storage beyond the expiration date. Pharmacy students are uniquely positioned to explore these unknowns and develop solutions with their high level of drug expertise. This research study combined with community service events involved the collaboration of pharmacy students with environmentalists, community volunteers, and law enforcement officers to collect and analyze unwanted medications, as well as explore factors pertinent to this public hazard

    Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate

    Full text link
    A hydrodynamic description is used to study the normal modes of a vortex in a zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the circulating superfluid velocity far from the vortex core provides a small perturbation that splits the originally degenerate normal modes of a vortex-free condensate. The relative frequency shifts are small in all cases considered (they vanish for the lowest dipole mode with |m|=1), suggesting that the vortex is stable. The Bogoliubov equations serve to verify the existence of helical waves, similar to those of a vortex line in an unbounded weakly interacting Bose gas. In the large-condensate (small-core) limit, the condensate wave function reduces to that of a straight vortex in an unbounded condensate; the corresponding Bogoliubov equations have no bound-state solutions that are uniform along the symmetry axis and decay exponentially far from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We have altered the material in Secs. 3B and 4 in connection with the normal modes that have |m|=1. Our present treatment satisfies the condition that the fundamental dipole mode of a condensate with (or without) a vortex should have the bare frequency $\omega_\perp

    Transition from synchronous to asynchronous superfluid phase slippage in an aperture array

    Full text link
    We have investigated the dynamics of superfluid phase slippage in an array of apertures. The magnitude of the dissipative phase slips shows that they occur simultaneously in all the apertures when the temperature is around 10 mK below the superfluid transition, and subsequently lose their simultaneity as the temperature is lowered. We find that when periodic synchronous phase slippage occurs, the synchronicity exists from the very first phase slip, and therefore is not due to mode locking of interacting oscillators. When the system is allowed to relax freely from a given initial energy, the total number of phase slips that occur and the energy left in the system after the last phase slip depends reproducibly on the initial energy. We find the energy remaining after the final phase slip is a periodic function of the initial system energy. This dependence directly reveals the discrete and dissipative nature of the phase slips and is a powerful diagnostic for investigation of synchronicity in the array. When the array slips synchronously, this periodic energy function is a sharp sawtooth. As the temperature is lowered and the degree of synchronicity drops, the peak of this sawtooth becomes rounded, suggesting a broadening of the time interval over which the array slips. The underlying mechanism for the higher temperature synchronous behavior and the following loss of synchronicity at lower temperatures is not yet understood. We discuss the implications of our measurements and pose several questions that need to be resolved by a theory explaining the synchronous behavior in this quantum system. An understanding of the array phase slip process is essential to the optimization of superfluid `dc-SQUID' gyroscopes and interferometers.Comment: 10 pages, 4 figure

    Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates

    Full text link
    The dynamics of vortices in trapped Bose-Einstein condensates are investigated both analytically and numerically. In axially symmetric traps, the critical rotation frequency for the metastability of an isolated vortex coincides with the largest vortex precession frequency (or anomalous mode) in the Bogoliubov excitation spectrum. As the condensate becomes more elongated, the number of anomalous modes increases. The largest frequency of these modes exceeds both the thermodynamic critical frequency and the nucleation frequency at which vortices are created dynamically. Thus, anomalous modes describe not only the critical rotation frequency for creation of the first vortex in an elongated condensate but also the vortex precession in a single-component spherical condensate.Comment: 4 pages revtex, 3 embedded figure

    Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates

    Full text link
    The nucleation of vortices and the resulting structures of vortex arrays in dilute, trapped, zero-temperature Bose-Einstein condensates are investigated numerically. Vortices are generated by rotating a three-dimensional, anisotropic harmonic atom trap. The condensate ground state is obtained by propagating the Gross-Pitaevskii equation in imaginary time. Vortices first appear at a rotation frequency significantly larger than the critical frequency for vortex stabilization. This is consistent with a critical velocity mechanism for vortex nucleation. At higher frequencies, the structures of the vortex arrays are strongly influenced by trap geometry.Comment: 5 pages, two embedded figures. To appear in Phys. Rev. A (RC

    Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates

    Full text link
    Angular momentum can be transferred to a trapped Bose-Einstein condensate by distorting its shape with an external rotating field, provided the rotational frequency is larger than a critical frequency fixed by the energy and angular momentum of the excited states of the system. By using the Gross-Pitaevskii equation and sum rules, we explore the dependence of such a critical frequency on the multipolarity of the excitations and the asymmetry of the confining potential. We also discuss its possible relevance for vortex nucleation in rotating traps.Comment: 4 pages revtex, 2 figures include

    Engineering a rare-cutting restriction enzyme: genetic screening and selection of NotI variants

    Get PDF
    Restriction endonucleases (REases) with 8-base specificity are rare specimens in nature. NotI from Nocardia otitidis-caviarum (recognition sequence 5′-GCGGCCGC-3′) has been cloned, thus allowing for mutagenesis and screening for enzymes with altered 8-base recognition and cleavage activity. Variants possessing altered specificity have been isolated by the application of two genetic methods. In step 1, variant E156K was isolated by its ability to induce DNA-damage in an indicator strain expressing M.EagI (to protect 5′-NCGGCCGN-3′ sites). In step 2, the E156K allele was mutagenized with the objective of increasing enzyme activity towards the alternative substrate site: 5′-GCTGCCGC-3′. In this procedure, clones of interest were selected by their ability to eliminate a conditionally toxic substrate vector and induce the SOS response. Thus, specific DNA cleavage was linked to cell survival. The secondary substitutions M91V, F157C and V348M were each found to have a positive effect on specific activity when paired with E156K. For example, variant M91V/E156K cleaves 5′-GCTGCCGC-3′ with a specific activity of 8.2 × 10(4) U/mg, a 32-fold increase over variant E156K. A comprehensive analysis indicates that the cleavage specificity of M91V/E156K is relaxed to a small set of 8 bp substrates while retaining activity towards the NotI sequence
    • …
    corecore