19 research outputs found

    Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species

    Get PDF
    Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures

    Working towards culturally sensitive ethical practice in a multicultural society

    Get PDF
    In the last two decades there has been a lot of theorising about multiculturalism and professional practice. Many practitioners are challenged by cultural diversity daily. Practising from a culturally sensitive ethical perspective in a multicultural society is essential for good practice. Postmodern influences and critical questioning are seen to inform culturally sensitive ethical practice in their encouragement of practitioners’ adoption of multiple belief systems and multiple perspectives and the need to pose questions challenging practice regarding awareness of cultural encapsulation and cultural sensitivity. The development of culturally sensitive ethical practice guidelines within the context of a multicultural society is proposed, firstly, by assessing the cultural sensitivity of the ethics codes and secondly, by balancing culture and ethical codes

    The second Sandia Fracture Challenge : predictions of ductile failure under quasi-static and moderate-rate dynamic loading

    No full text
    International audienceDuctile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios , such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile-and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios , but also provides a detailed dataset for non-blind assessment of alternative methods

    The lymphocyte-epithelial-bacterial interface

    No full text
    corecore