10 research outputs found

    A Year in Space for the CubeSat Multispectral Observing System: CUMULOS

    Get PDF
    CUMULOS is a three-camera system flying as a secondary payload on the Integrated Solar Array and Reflectarray Antenna (ISARA) mission with the goals of researching the use of uncooled commercial infrared cameras for Earth remote sensing and demonstrating unique nighttime remote sensing capabilities. Three separate cameras comprise the CUMULOS payload: 1) a visible (VIS) Si CMOS camera, 2) a shortwave infrared (SWIR) InGaAs camera, and 3) a longwave infrared (LWIR) vanadium oxide microbolometer. This paper reviews on-orbit operations during the past year, in-space calibration observations and techniques, and Earth remote sensing highlights from the first year of space operations. CUMULOS operations commenced on 8 June 2018 following the successful completion of the primary ISARA mission. Some of the unique contributions from the CUMULOS payloads include: 1) demonstrating the use of bright stars for on-orbit radiometric calibration of CubeSat payloads, 2) acquisition of science-quality nighttime lights data at 130-m resolution, and 3) operating the first simple Earth observing infrared payloads successfully flown on a CubeSat. Sample remote sensing results include images of: cities at night, ship lights (including fishing vessels), oil industry gas flares, serious wildfires, volcanic activity, and daytime and nighttime clouds. The CUMULOS VIS camera has measured calibrated nightlights imagery of major cities such as Los Angeles, Singapore, Shanghai, Tokyo, Kuwait City, Abu Dhabi, Jeddah, Istanbul, and London at more than 5x the resolution of VIIRS. The utility of these data for measuring light pollution, and mapping urban growth and infrastructure development at higher resolution than VIIRS is being studied, with an emphasis placed on Los Angeles. The Carr , Camp and Woolsey fires from the 2018 California fire season were imaged with all three cameras and results highlight the excellent wildfire imaging performance that can be achieved by small sensors. The SWIR camera has exhibited extreme sensitivity to flare and fire hotspots, and was even capable of detecting airglow-illuminated nighttime cloud structures by taking advantage of the strong OH emissions within its 0.9-1.7 micron bandpass. The LWIR microbolometer has proven successful at providing cloud context imagery for our nightlights mapping experiments, can detect very large fires and the brightest flare hotspots, and can also image terrain temperature variation and urban heat islands at 300-m resolution. CUMULOS capabilities show the potential of CubeSats and small sensors to perform several VIIRS-like nighttime mission areas in which wide area coverage can be traded for greater resolution over a smaller field of view. The sensor has been used in collaboration with VIIRS researchers to explore these mission areas and side-by-side results will be presented illustrating the capabilities as well as the limitations of small aperture LEO CubeSat systems

    CubeSat Laser Communication Crosslink Pointing Demonstration

    Get PDF
    An opportunity arose to demonstrate optical crosslink pointing between two CubeSats in LEO using spacecraft not specifically designed for that purpose. The AeroCube-7 spacecraft, designed for optical downlinks as part of the Optical Communication and Sensor Demonstration mission, was tasked to point its communications laser at the ISARA spacecraft to demonstrate the capability of one CubeSat to track another in LEO. The ISARA spacecraft, which does not carry a data receiver, but does carry a short-wave infrared camera (SWIR) as part of the CUMULOS payload, was tasked to track the AeroCube-7 spacecraft and use the SWIR camera to record the OCSD laser. The SWIR images were downloaded over an RF channel and used to evaluate the pointing and tracking of both spacecraft. Two successful tests of crosslink pointing were completed between AeroCube-7 and ISARA, providing a demonstration in principle of the capability, and laying the groundwork for more refined experiments that will use this technique for on-orbit measurements of beam profiling. Further tests between AeroCube-11 and ISARA are also in preparation to demonstrate crosslink pointing in a more-challenging orbital configuration

    The Rogue Alpha and Beta Mission: Operations, Infrared Remote Sensing, LEO Data Processing, and Lessons Learned From Three Years on Orbit With Two Laser Communication-Equipped 3U CubeSats

    Get PDF
    The Aerospace Corporation\u27s Rogue-alpha, beta program was a rapid prototyping demonstration aimed at building and deploying an infrared remote sensing capability into low Earth orbit within 18 months. The two satellites and their data were then used for three years as an experimental testbed for future proliferated low Earth orbit (pLEO) constellations. Their launch took place on November 2, 2019, followed by boost and deployment of two identical spacecraft (Rogue-alpha and beta) by the Cygnus ISS cargo vessel into circular 460-km, 52° inclined orbits on January31, 2020. The primary sensors were 1.4-micron band, InGaAs short wavelength infrared (SWIR) cameras with640x512 pixels and a 28° field-of-view. The IR sensors were accompanied by 10-megapixel visible context cameras with a 37° field-of-view. Star sensors were also tested as nighttime imaging sensors. Three years of spacecraft and sensor operations were achieved, allowing a variety of experiments to be conducted. The first year focused on alignment and checkout of the laser communication systems, sensor calibration, and priority IR remote sensing objectives, including the study of Earth backgrounds, observation of natural gas flares, and detection of rocket launches. The second year of operations added study of environmental remote sensing targets, including severe storms, wildfires, and volcanic eruptions, while continuing to gather Earth backgrounds and rocket launch observations. The final year emphasized advanced data processing and exploitation techniques applied to collected data, using machine learning and artificial intelligence for tasks such as target tracking, frame co-registration, and stereo data exploitation. Mission operations continued in the final year, with an emphasis on collecting additional rocket launch data, and higher frame rate backgrounds data. This report summarizes the Rogue alpha, beta mission’s outcomes and presents processed IR data, including the detection and tracking of rocket launches with dynamic Earth backgrounds, embedded moving targets in background scenes, and the use of pointing-based registration to create fire line videos of severe wildfires and 3D scenes of pyrocumulonimbus clouds. Lessons learned from the experimental ConOps, data exploitation, and database curation are also summarized for application to future pLEO constellation missions

    Remote Sensing Experiments Using the Rogue-alpha,beta CubeSats as a Constellation: High Frame Rate Environmental Observations from Agile, Taskable, Infrared and Visible Sensors in Low Earth Orbit

    Get PDF
    The Aerospace Corporation’s Rogue-alpha,beta program built and launched two 3-Unit CubeSats in 18-months, each equipped with modified commercial infrared camera payloads, visible context cameras, laser communications and precision pointing capabilities. Launched on November 2, 2019, the two spacecraft (Rogue-alpha and beta) were boosted and released from the International Space Station Cygnus NG-12 robotic resupply spacecraft on January 31, 2020 into a circular 460-km, 52° inclined orbit. The primary Rogue IR sensor is a 1.4-micron band, 640x512 pixel, 28° field of view, InGaAs short wavelength infrared (SWIR) camera. It is accompanied by a panchromatic, 10-megapixel, 37° field of view visible context camera. In addition, the narrow- and wide-field-of-view star sensors may also be utilized as nighttime sensors. During the first two years of spaceflight, the Rogue satellites conducted a series of experiments using both spacecraft to conduct cooperative remote sensing observations and to test the capabilities of the 1.4-micron water overtone band. These included: 1) fore-aft pointing using two spacecraft for stereo observations of cloud structure and altitude, 2) horizon-pointed imaging in all directions relative to the spacecraft orbit (fore, aft, port, and starboard) to maximize the imaged field of view, 3) pre-programmed point-and-stare imaging, 4) nadir-pointed operations for vicarious calibration with other satellites. All of these modes of operation are usually conducted in multi-frame collections at 1-20 frames-per-second for dozens to thousands of frames. During the mission we investigated different modes of collecting data, taking advantage of the evolving orbital spacing of the pair of CubeSats. Initial close satellite spacing allowed along-track fore-aft stereo observations of weather formations, as well as pre-programmed tip-and-queue observations, and sequential point-and-stare experiments aimed at collecting minutes of data on targets of interest. Cloud altitude was measured on weather events by simultaneous stereo observations, and by mono observations using the changing view angles during a constant point along track or slewing during a pass. Observations were collected on hurricanes, typhoons, thunderstorms, monsoon storms, and forecasted tornadic weather. Unique observations of severe wildfires were collected, exploring the capability for our 1.4micron band to detect fires during daytime, and to characterize pyrocumulonimbus clouds. Nighttime observations were also made of human lighting, infrared sources, and moonlight-illuminated clouds, including observations utilizing the Rogue satellites’ star sensors for remote sensing tests. These experiments collectively explored the possibilities for dynamically tasked, high-frame-rate, low-earth-orbit sensors to carry out weather and environmental monitoring missions in ways that differ from traditional scanned or push-broom satellite sensor systems. We will present a summary of our tasking ConOps, observations of weather events and fires, and highlight results and techniques for cloud height characterization by our two CubeSat constellation during its first two years on orbit. Our results with two satellites demonstrate possibilities for future missions using cooperative tasking in larger constellations of dynamically tasked sensors in low Earth orbit

    Landsat Imagery from a CubeSat: Results and Operational Lessons from the R3 Satellite\u27s First 18 Months in Space

    Get PDF
    R3 is a 3-U CubeSat launched on a RocketLab Electron into a 500 km circular orbit at 85° inclination on December 16th, 2018. The spacecraft flies a multispectral sensor that takes data in the six Landsat visible and near infrared bands. The R3 sensor mates a custom refractive telescope with a Materion Precision Optics Landsat filter, and an ON Semiconductor fast-framing high-sensitivity Si CMOS array, to produce 50-km wide, 44-m resolution Landsat-like image strips. Data are taken in push-broom mode and are downlinked via a 100Mbps compact lasercom system. Frames are then co-added on the ground in time-delay-integration (TDI) fashion to increase signal-to-noise ratio and create multi-spectral Earth images from the compact sensor. The system is an engineering concept demonstration of a compact multispectral sensor in CubeSat form. We describe our ConOps, flight operations, sensor focus and alignment, initial imaging check out, and initial comparisons of R3 data to Landsat-8 imagery of the same Earth locations. RGB, color infrared, and normalized differential vegetation index (NDVI) products are compared between CUMULOS and Landsat-8. Results show good multispectral image quality from the CubeSat sensor, and illustrate the ability of R3 to detect vegetation and other features in a manner similar to Landsat, as well as the challenge in perfectly exposing all 6 VIS/NIR Landsat bands using our commercial 10-bit CMOS array. We also highlight the performance of the compact laser communications system which enabled the successful performance of this mission

    Flight Operations of Two Rapidly Assembled CubeSats with Commercial Infrared Cameras: The Rogue-Alpha,Beta Program

    Get PDF
    The Aerospace Corporation’s Rogue-alpha, betaprogram, co-funded by the Space and Missile Systems Center’s Development Corps, is a rapid prototyping effort that built and launched two 3-Unit CubeSats equipped with modified commercial IR camera payloads, laser communications and precision pointing capabilities in 18-months. Launched on 2 November 2019, the two spacecraft were released from the ISS Cygnus NG-12 robotic resupply spacecraft on 31 January 2020 into a circular 460-km, 52° inclined orbit. The two Rogue spacecraft are serving as testbeds for studying wide-field-of-view fast-framing imaging, on-orbit stellar calibration techniques for small IR payloads, and associated spacecraft flight operations. Precision pointing is enabled by three star sensors. High data rate sensor observations are enabled by the ultra-compact 200 Mbps lasercom system, which downlinks gigabytes of stored data during a single laser contact, using The Aerospace Corporation’s prototype ground stations located in El Segundo, California. The Rogue-alpha, beta IR sensor is a 1.4 micron band, 640x512 pixel, 28° field of view, InGaAs SWIR camera. It is accompanied by a panchromatic, 10-megapixel, 37° field of view visible context camera. Modes of sensor operation have included: 1) horizon-pointed imaging in all directions relative to the spacecraft orbit (fore, aft, port, and starboard) which is designed to maximize the imaged field of view, 2) point-and-stare imaging, 3) nadir-pointed, and 4) stereo fore-aft pointing using both spacecraft. All of these modes of operation are usually conducted in multi-frame collections at 1-20hz for dozens to thousands of frames. Highlights from the Rogue-alpha, beta sensor Earth remote sensing observation experiments will be presented. These have included impressive video imagery of hurricanes, typhoons, thunderstorms, and high clouds in the intra-tropical convergence zone. Infrared and visible point sources studied include gas flares, wildfires, active volcanos, nighttime lights, and other phenomena, including the first infrared CubeSat observations of space launch upper stages in flight. Stereo cloud imaging observations were also conducted with an aim of better understanding Earth backgrounds from low Earth orbit. Highlights from the CubeSat flight operations experiments include: 1) spacecraft-to-spacecraft boresight alignment of Rogue’s lasercom systems, and 2) metric and radiometric calibration of Rogue’s flight cameras using bright infrared stars. The results from the Rogue-alpha, beta460-km orbit show the exciting possibilities for wide-field-of-view missions from low earth orbit

    CubeSat Nighttime Lights

    Get PDF
    Monitoring of visible emissions at night from satellites has evolved into a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work with Defense Meteorological Support Program (DMSP) sensors has been followed by new work with the Visible Infrared Imaging Radiometer Suite (VIIRS), and International Space Station (ISS) photography. We have been investigating the ability of CubeSats to carry out nightlights mapping missions and here present recent results from existing visible wavelength cameras on AeroCube satellites. CubeSat sensors were successfully tasked to image oil industry natural gas flares in the Persian Gulf region, urban areas and other sites of interest. Point and stare maneuvers to maximize resolution and sensitivity were demonstrated. Our initial work demonstrates the ability of CubeSats to conduct nightlights missions, as well as the limitations of the small cameras flown to date. Comparison of VIIRS and AeroCube imagery are made. Potential uses of the CubeSat platforms include: 1) providing different overpass times than the early morning overpass provided by VIIRS to potentially spot missing lights activity, 2) providing multi-color nightlights to supplement the monochromatic VIIRS day-night-band (DNB) data, and 3) “swarming” the nighttime mission with multiple platforms to provide more frequent tasked data on transient events such as fires, volcanic activity, and natural disaster power outages. CubeSats sensors may be able to improve mapping of the human footprint in targeted regions via nighttime lights and contribute to better monitoring of: urban growth, light pollution, energy usage, the improvement of electrical power grids in developing countries, and oil industry flare activity. Future CubeSats sensors should be able to contribute to nightlights monitoring efforts by NOAA, NASA, ESA, the World Bank and others. Our current results are summarized and next steps discussed, including soon-to-be-launched sensors and future program development

    CubeSat Nighttime Lights

    Get PDF
    Monitoring of visible emissions at night from satellites has evolved into a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work with Defense Meteorological Support Program (DMSP) sensors has been followed by new work with the Visible Infrared Imaging Radiometer Suite (VIIRS), and International Space Station (ISS) photography. We have been investigating the ability of CubeSats to carry out nightlights mapping missions and here present recent results from existing visible wavelength cameras on AeroCube satellites. CubeSat sensors were successfully tasked to image oil industry natural gas flares in the Persian Gulf region, urban areas and other sites of interest. Point and stare maneuvers to maximize resolution and sensitivity were demonstrated. Our initial work demonstrates the ability of CubeSats to conduct nightlights missions, as well as the limitations of the small cameras flown to date. Comparison of VIIRS and AeroCube imagery are made. Potential uses of the CubeSat platforms include: 1) providing different overpass times than the early morning overpass provided by VIIRS to potentially spot missing lights activity, 2) providing multi-color nightlights to supplement the monochromatic VIIRS day-night-band (DNB) data, and 3) “swarming” the nighttime mission with multiple platforms to provide more frequent tasked data on transient events such as fires, volcanic activity, and natural disaster power outages. CubeSats sensors may be able to improve mapping of the human footprint in targeted regions via nighttime lights and contribute to better monitoring of: urban growth, light pollution, energy usage, the improvement of electrical power grids in developing countries, and oil industry flare activity. Future CubeSats sensors should be able to contribute to nightlights monitoring efforts by NOAA, NASA, ESA, the World Bank and others. Our current results are summarized and next steps discussed, including soon-to-be-launched sensors and future program development

    A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data

    No full text
    We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP). Gas flaring is a widely used practice for the disposal of associated gas in oil production and processing facilities where there is insufficient infrastructure for utilization of the gas (primarily methane). Improved utilization of the gas is key to reducing global carbon emissions to the atmosphere. The DMSP estimates of flared gas volume are based on a calibration developed with a pooled set of reported national gas flaring volumes and data from individual flares. Flaring efficiency was calculated as the volume of flared gas per barrel of crude oil produced. Global gas flaring has remained largely stable over the past fifteen years, in the range of 140 to 170 billion cubic meters (BCM). Global flaring efficiency was in the seven to eight cubic meters per barrel from 1994 to 2005 and declined to 5.6 m3 per barrel by 2008. The 2008 gas flaring estimate of 139 BCM represents 21% of the natural gas consumption of the USA with a potential retail market value of $68 billion. The 2008 flaring added more than 278 million metric tons of carbon dioxide equivalent (CO2e) into the atmosphere. The DMSP estimated gas flaring volumes indicate that global gas flaring has declined by 19% since 2005, led by gas flaring reductions in Russia and Nigeria, the two countries with the highest gas flaring levels. The flaring efficiency of both Russia and Nigeria improved from 2005 to 2008, suggesting that the reductions in gas flaring are likely the result of either improved utilization of the gas, reinjection, or direct venting of gas into the atmosphere, although the effect of uncertainties in the satellite data cannot be ruled out. It is anticipated that the capability to estimate gas flaring volumes based on satellite data will spur improved utilization of gas that was simply burnt as waste in previous years

    The VIIRS Day/Night Band: A Flicker Meter in Space?

    No full text
    The VIIRS day/night band (DNB) high gain stage (HGS) pixel effective dwell time is in the range of 2–3 milliseconds (ms), which is about one third of the flicker cycle present in lighting powered by alternating current. Thus, if flicker is present, it induces random fluctuations in nightly DNB radiances. This results in increased variance in DNB temporal profiles. A survey of flicker characteristics conducted with high-speed camera data collected on a wide range of individual luminaires found that the flicker is most pronounced in high-intensity discharge (HID) lamps, such as high- and low-pressure sodium and metal halides. Flicker is muted, but detectable, in incandescent luminaires. Modern light-emitting diodes (LEDs) and fluorescent lights are often nearly flicker-free, thanks to high-quality voltage smoothing. DNB pixel footprints are about half a square kilometer and can contain vast numbers of individual luminaires, some of which flicker, while others do not. If many of the flickering lights are drawing from a common AC supplier, the flicker can be synchronized and leave an imprint on the DNB temporal profile. In contrast, multiple power supplies will throw the flickering out of synchronization, resulting in a cacophony with less radiance fluctuation. The examination of DNB temporal profiles for locations before and after the conversion of high-intensity discharge (HID) to LED streetlight conversions shows a reduction in the index of dispersion, calculated by dividing the annual variance by the mean. There are a number of variables that contribute to radiance variations in the VIIRS DNB, including the view angle, cloud optical thickness, atmospheric variability, snow cover, lunar illuminance, and the compilation of temporal profiles using pixels whose footprints are not perfectly aligned. It makes sense to adjust the DNB radiance for as many of these extraneous effects as possible. However, none of these adjustments will reduce the radiance instability introduced by flicker. Because flicker is known to affect organisms, including humans, the development of methods to detect and rate the strength of flickering from space will open up new areas of research on the biologic impacts of artificial lighting. Over time, there is a trend towards the reduction of flicker in outdoor lighting through the replacement of HID with low-flicker LED sources. This study indicates that the effects of LED conversions on the brightness and steadiness of outdoor lighting can be analyzed with VIIRS DNB temporal profiles
    corecore