55 research outputs found

    Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(® )is a predictor for relapse: A preliminary report

    Get PDF
    BACKGROUND: Lung cancer still remains one of the most commonly occurring solid tumors and even in stage Ia, surgery fails in 30% of patients who develop distant metastases. It is hypothesized that these must have developed from occult circulating tumor cells present at the time of surgery, or before. The aim of the present study was to detect such cells in the peripheral blood and to monitor these cells following surgery. METHODS: 30 patients treated for lung cancer with surgery were monitored for circulating epithelial cells (CEC) by taking peripheral blood samples before, 2 weeks and 5 months after surgery and/or radiotherapy (RT) chemotherapy (CT) or combined RT/CT using magnetic bead enrichment and laser scanning cytometry (MAINTRAC(®)) for quantification of these cells. RESULTS: In 86% of the patients CEC were detected before surgery and in 100% at 2 weeks and 5 months after surgery. In the control group, which consisted of 100 normal donors without cancer, 97 % were negative for CEC. A significantly higher number of CEC was found preoperatively in patients with squamous cell carcinoma than in those with adenocarcinoma. In correlation to the extent of parenchymal manipulation 2 weeks after surgery, an increase in numbers of CEC was observed with limited resections (18/21) whereas pneumonectomy led to a decrease (5/8) of CEC, 2 weeks after surgery. The third analysis done 5 months after surgery identified 3 groups of patients. In the group of 5 patients who received neo- or adjuvant chemo/radiotherapy there was evidence that monitoring of CEC can evaluate the effects of therapy. Another group of 7 patients who underwent surgery only showed a decrease of CEC and no signs of relapse. A third group of 11 patients who had surgery only, showed an increase of CEC (4 with an initial decrease after surgery and 7 with continuous increase). In the group with a continuous increase during the following 24 months, 2 early relapses in patients with stage Ia adenocarcinoma were observed. The increase of CEC preceded clinical detection by six months. CONCLUSION: We consider, therefore, that patients with adenocarcinoma and a continuous increase of CEC after complete resection for lung cancer are at an increased risk of early relapse

    Prospective Monitoring of Circulating Epithelial Tumor Cells (CETC) Reveals Changes in Gene Expression during Adjuvant Radiotherapy of Breast Cancer Patients

    Get PDF
    Circulating epithelial tumor cells (CETC) are considered to be responsible for the formation of metastases. Therefore, their importance as prognostic and/or predictive markers in breast cancer is being intensively investigated. Here, the reliability of single cell expression analyses in isolated and collected CETC from whole blood samples of patients with early-stage breast cancer before and after radiotherapy (RT) using the maintrac ® method was investigated. Single-cell expression analyses were performed with qRT-PCR on a panel of selected genes: GAPDH, EpCAM, NANOG, Bcl-2, TLR 4, COX-2, PIK3CA, Her-2/neu, Vimentin, c-Met, Ki-67. In all patients, viable CETC were detected prior to and at the end of radiotherapy. In 7 of the 9 (77.8%) subjects examined, the CETC number at the end of the radiotherapy series was higher than before. The majority of genes analyzed showed increased expression after completion of radiotherapy compared to baseline. Procedures and methods used in this pilot study proved to be feasible. The method is suitable for further investigation of the underlying molecular biological mechanisms occurring in cells surviving radiotherapy and possibly the development of radiation resistance

    Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells

    Get PDF
    BACKGROUND: Surgery of malignant tumors has long been suspected to be the reason for enhancement of growth of metastases with fatal outcome. This often prevented surgeons from touching the tumor if not absolutely necessary. We have shown in lung cancer patients that surgery, itself, leads to mobilization of tumor cells into peripheral blood. Some of the mobilized cells finding an appropriate niche might grow to form early metastases. Monitoring of tumor cell release during and the fate of such cells after surgery for breast cancer may help to reveal how metastases develop after surgery. METHOD: We used the MAINTRAC(® )analysis, a new tool for online observation of circulating epithelial cells, to monitor the number of epithelial cells before, 30 min, 60 min, three and seven days after surgery and during subsequent variable follow up in breast cancer patients. RESULTS: Circulating epithelial cells were already present before surgery in all patients. During the first 30–60 min after surgery values did not change immediately. They started increasing during the following 3 to 4 days up to thousand fold in 85% of treated patients in spite of complete resection of the tumor with tumor free margins in all patients. There was a subsequent re-decrease, with cell numbers remaining above pre-surgery values in 58% of cases until onset of chemotherapy. In a few cases, where no further therapy or only hormone treatment was given due to low risk stage, cell numbers were monitored for up to three years. They remained elevated with no or a slow decrease over time. This was in contrast to the observation in a patient where surgery was performed for benign condition. She was monitored before surgery with no cells detectable. Epithelial cells increased up to more than 50 000 after surgery but followed by a complete reduction to below the threshold of detection. CONCLUSION: Frequently before but regularly during surgery of breast cancer, epithelial cells are mobilized into circulation. Part of these cells, most probably normal or apoptotic cells, are cleared from the circulation as also shown to occur in benign conditions. After resection even if complete and of small tumors, cells can remain in the circulation over long times. Such cells may remain "dormant" but might settle and grow into metastases, if they find appropriate conditions, even after years

    Quantification of the response of circulating epithelial cells to neodadjuvant treatment for breast cancer: a new tool for therapy monitoring

    Get PDF
    INTRODUCTION: In adjuvant treatment for breast cancer there is no tool available with which to measure the efficacy of the therapy. In contrast, in neoadjuvant therapy reduction in tumour size is used as an indicator of the sensitivity of tumour cells to the agents applied. If circulating epithelial (tumour) cells can be shown to react to therapy in the same way as the primary tumour, then this response may be exploited to monitor the effect of therapy in the adjuvant setting. METHOD: We used MAINTRAC(® )analysis to monitor the reduction in circulating epithelial cells during the first three to four cycles of neoadjuvant therapy in 30 breast cancer patients. RESULTS: MAINTRAC(® )analysis revealed a patient-specific response. Comparison of this response with the decline in size of the primary tumour showed that the reduction in number of circulating epithelial cells accurately predicted final tumour reduction at surgery if the entire neoadjuvant regimen consisted of chemotherapy. However, the response of the circulating tumour cells was unable to predict the response to additional antibody therapy. CONCLUSION: The response of circulating epithelial cells faithfully reflects the response of the whole tumour to adjuvant therapy, indicating that these cells may be considered part of the tumour and can be used for therapy monitoring

    A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy

    Get PDF
    Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models

    Tumor Cell Seeding During Surgery—Possible Contribution to Metastasis Formations

    Get PDF
    In spite of optimal local control in breast cancer, distant metastases can develop as a systemic part of this disease. Surgery is suspected to contribute to metastasis formation activating dormant tumor cells. Here we add data that seeding of cells during surgery may add to the risk of metastasis formation. The change in circulating epithelial tumor cells (CETC) was monitored in 66 breast cancer patients operated on with breast conserving surgery or mastectomy and during the further course of the disease, analyzing CETC from unseparated white blood cells stained with FITC-anti-EpCAM. An increase in cell numbers lasting until the start of chemotherapy was observed in about one third of patients. It was more preeminent in patients with low numbers of CETC before surgery and, surprisingly, in patients without involved lymph nodes. Patients with the previously reported behavior—Reincrease in cell numbers during adjuvant chemotherapy and subsequent further increase during maintenance therapy—were at increased risk of relapse. In addition to tumor cells already released during growth of the tumor, cell seeding during surgery may contribute to the early peak of relapses observed after removal of the primary tumor and chemotherapy may only marginally postpone relapse in patients with aggressively growing tumors

    In Reply

    No full text
    • …
    corecore