12,405 research outputs found

    Persistent current magnification in a double quantum-ring system

    Full text link
    The electronic transport in a system of two quantum rings side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We derived analytical expressions for the conductance, density of states and the persistent current when the rings are threaded by magnetic fluxes. We found a clear manifestation of the presence of bound states in each one of those physical quantities when either the flux difference or the sum of the fluxes are zero or integer multiples of a quantum of flux. These bound states play an important role in the magnification of the persistent current in the rings. We also found that the persistent current keeps a large amplitude even for strong ring-wire coupling.Comment: 15 pages, 10 figures. Submitted to PR

    Electron Confinement Induced by Diluted Hydrogen-like Ad-atoms in Graphene Ribbons

    Get PDF
    We report the electronic properties of two-dimensional systems made of graphene nanoribbons which are patterned with ad-atoms in two separated regions. Due to the extra electronic confinement induced by the presence of the impurities, we find resonant levels, quasi-bound and impurity-induced localized states, which determine the transport properties of the system. Regardless of the ad-atom distribution in the system, we apply band-folding procedures to simple models and predict the energies and the spatial distribution of those impurity-induced states. We take into account two different scenarios: gapped graphene and the presence of randomly distributed ad-atoms in a low dilution regime. In both cases the defect-induced resonances are still detected. Our findings would encourage experimentalist to synthesize these systems and characterize their quasi-localized states employing, for instance, scanning tunneling spectroscopy (STS). Additionally, the resonant transport features could be used in electronic applications and molecular sensor devices.Comment: 12 pages, 11 figures, submitted (minor changes
    • …
    corecore