23,567 research outputs found

    Tidal Disruption Flares: The Accretion Disk Phase

    Full text link
    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically the hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of main results derived from our simulations is that black body fits of X-ray data tend to overestimate the true mean disk temperature. The temperature derived from black body fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous timescale, which fixes also the raising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10^45-10^46 erg s^-1 whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 years. Predicted soft X-ray light curves were fitted to data on galaxies in which a variable X-ray emission, related to tidal events, was detected.Comment: 14 pages, 11 figures, Accepted for publication in Ap

    Modified Renormalization Strategy for Sandpile Models

    Full text link
    Following the Renormalization Group scheme recently developed by Pietronero {\it et al}, we introduce a simplifying strategy for the renormalization of the relaxation dynamics of sandpile models. In our scheme, five sub-cells at a generic scale bb form the renormalized cell at the next larger scale. Now the fixed point has a unique nonzero dynamical component that allows for a great simplification in the computation of the critical exponent zz. The values obtained are in good agreement with both numerical and theoretical results previously reported.Comment: APS style, 9 pages and 3 figures. To be published in Phys. Rev.

    Fracture and second-order phase transitions

    Full text link
    Using the global fiber bundle model as a tractable scheme of progressive fracture in heterogeneous materials, we define the branching ratio in avalanches as a suitable order parameter to clarify the order of the phase transition occurring at the collapse of the system. The model is analyzed using a probabilistic approach suited to smooth fluctuations. The branching ratio shows a behavior analogous to the magnetization in known magnetic systems with 2nd-order phase transitions. We obtain a universal critical exponent β0.5\beta\approx 0.5 independent of the probability distribution used to assign the strengths of individual fibers.Comment: 5 pages, 5 figures, APS style, submitted for publicatio
    corecore