112 research outputs found

    Human west nile virus lineage 2 infection: Epidemiological, clinical, and virological findings

    Get PDF
    West Nile virus (WNV) lineage 2 is expanding and causing large outbreaks in Europe. In this study, we analyzed the epidemiological, clinical, and virological features of WNV lineage 2 infection during the large outbreak that occurred in northern Italy in 2018. The study population included 86 patients with neuroinvasive disease (WNND), 307 with fever (WNF), and 34 blood donors. Phylogenetic analysis of WNV full genome sequences from patients' samples showed that the virus belonged to the widespread central/southern European clade of WNV lineage 2 and was circulating in the area at least since 2014. The incidence of WNND and WNF progressively increased with age and was higher in males than in females. Among WNND patients, the case fatality rate was 22%. About 70% of blood donors reported symptoms during follow-up. Within the first week after symptom onset, WNV RNA was detectable in the blood or urine of 80% of patients, while 20% and 40% of WNND and WNF patients, respectively, were WNV IgM-seronegative. In CSF samples of WNND patients, WNV RNA was typically detectable when WNV IgM antibodies were absent. Blunted or no WNV IgM response and high WNV IgG levels were observed in seven patients with previous flavivirus immunity

    prevalence of igm and igg antibodies to west nile virus among blood donors in an affected area of north eastern italy summer 2009

    Get PDF
    Following reports of West Nile neuroinvasive disease in the north-eastern area of Italy in 2009, all blood donations dating from the period between 1 August and 31 October 2009 in the Rovigo province of the Veneto region were routinely checked to exclude those with a positive nucleic acid test for West Nile virus (WNV). Only one of 5,726 blood donations was positive (17.5 per 100,000 donations; 95% confidence interval (CI): 0.4-97.3). In addition, a selection of 2,507 blood donations collected during the period from 20 July to 15 November 2009 were screened by ELISA for IgG and IgM antibodies against WNV. A positive result was received for 94 of them. The positive sera were further evaluated using immunofluorescence and plaque reduction neutralisation test (PRNT), in which only 17 sera were confirmed positive. This corresponds to a prevalence of 6.8 per 1,000 sera (95% CI: 4.0-10.9). In a case-control study that matched each of the 17 PRNT-positive sera with four negative sera with the same date of donation and same donation centre, we did not find a significant association with age and sex of the donor; donors who worked mainly outdoors were significantly more at risk to have a positive PRNT for WNV

    Correlation of EGFR, pEGFR and p16INK4 expressions and high risk HPV infection in HIV/AIDS-related squamous cell carcinoma of conjunctiva

    Get PDF
    Background: Squamous cell carcinoma of conjunctiva has increased tenfold in the era of HIV/AIDS. The disease pattern has also changed in Africa, affecting young persons, with peak age-specific incidence of 30-39 years, similar to that of Kaposi sarcoma, a well known HIV/AIDS defining neoplasm. In addition, the disease has assumed more aggressive clinical course. The contributing role of exposure to high risk HPV in the development of SCCC is still emerging. Objective. The present study aimed to investigate if immunohistochemical expressions of EGFR, pEGFR and p16, could predict infection with high risk HPV in HIV-related SCCC. Methods. FFPE tissue blocks of fifty-eight cases diagnosed on hematoxylin and eosin with SCCC between 2005-2011, and subsequently confirmed from medical records to be HIV positive at the department of human pathology, UoN/KNH, were used for the study. Immunohistochemistry was performed to assess the expressions of p16INK4A, EGFR and pEGFR. This was followed with semi-nested PCR based detection and sequencing of HPV genotypes. The sequences were compared with the GenBank database, and data analyzed for significant statistical correlations using SPSS 16.0. Ethical approval to conduct the study was obtained from KNH-ERC. Results: Out of the fifty-eight cases of SCCC analyzed, twenty-nine (50%) had well differentiated (grade 1), twenty one (36.2%) moderately differentiated (grade 2) while eight (13.8%) had poorly differentiated (grade 3) tumours. Immunohistochemistry assay was done in all the fifty eight studied cases, of which thirty nine cases (67.2%) were positive for p16INK4A staining, forty eight cases (82.8%) for EGFR and fifty one cases (87.9%) showed positivity for p-EGFR. HPV DNA was detected in 4 out of 40 SCCC cases (10%) in which PCR was performed, with HPV16 being the only HPV sub-type detected. Significant statistical association was found between HPV detection and p16INK4 (p=0.000, at 99% C.I) and EGFR (p=0.028, at 95% C.I) expressions, but not pEGFR. In addition, the expressions of these biomarkers did not show any significant association with tumor grades. Conclusion: This study points to an association of high risk HPV with over expressions of p16INK4A and EGFR proteins in AIDS-associated SCCC. © 2014 Mwololo et al.; licensee BioMed Central Ltd

    Neutralising reactivity against SARS-CoV-2 delta and omicron variants by vaccination and infection history.

    Get PDF
    BACKGROUND: The continuous emergence of SARS-CoV-2 variants of concern (VOC) with immune escape properties, such as Delta (B.1.617.2) and Omicron (B.1.1.529), questions the extent of the antibody-mediated protection against the virus. Here we investigated the long-term antibody persistence in previously infected subjects and the extent of the antibody-mediated protection against B.1, B.1.617.2 and BA.1 variants in unvaccinated subjects previously infected, vaccinated naĂŻve and vaccinated previously infected subjects. METHODS: Blood samples collected 15 months post-infection from unvaccinated (n=35) and vaccinated (n=41) previously infected subjects (Vo' cohort) were tested for the presence of antibodies against the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens using the Abbott, DiaSorin, and Roche immunoassays. The serum neutralising reactivity was assessed against B.1, B.1.617.2 (Delta), and BA.1 (Omicron) SARS-CoV-2 strains through micro-neutralisation. The antibody titres were compared to those from previous timepoints, performed at 2- and 9-months post-infection on the same individuals. Two groups of naĂŻve subjects were used as controls, one from the same cohort (unvaccinated n=29 and vaccinated n=20) and a group of vaccinated naĂŻve healthcare workers (n=61). RESULTS: We report on the results of the third serosurvey run in the Vo' cohort. With respect to the 9-month time point, antibodies against the S antigen significantly decreased (P=0.0063) among unvaccinated subjects and increased (P<0.0001) in vaccinated individuals, whereas those against the N antigen decreased in the whole cohort. When compared with control groups (naĂŻve Vo' inhabitants and naĂŻve healthcare workers), vaccinated subjects that were previously infected had higher antibody levels (P<0.0001) than vaccinated naĂŻve subjects. Two doses of vaccine elicited stronger anti-S antibody response than natural infection (P<0.0001). Finally, the neutralising reactivity of sera against B.1.617.2 and BA.1 was 4-fold and 16-fold lower than the reactivity observed against the original B.1 strain. CONCLUSIONS: These results confirm that vaccination induces strong antibody response in most individuals, and even stronger in previously infected subjects. Neutralising reactivity elicited by natural infection followed by vaccination is increasingly weakened by the recent emergence of VOCs. While immunity is not completely compromised, a change in vaccine development may be required going forward, to generate cross-protective pan-coronavirus immunity in the global population

    Simultaneous identification of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, and Trichomonas vaginalis ‒ multicenter evaluation of the Alinity m STI assay

    Get PDF
    Abstract Objectives Accurate and rapid diagnosis of sexually transmitted infections (STIs) is essential for timely administration of appropriate treatment and reducing the spread of the disease. We examined the performance of the new Alinity m STI assay, a qualitative real-time multiplex PCR test for simultaneous identification of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Mycoplasma genitalium (MG), and Trichomonas vaginalis (TV) run on the fully automated Alinity m platform. Methods This international, multicenter study evaluated the accuracy, reproducibility, and clinical performance of the Alinity m STI assay compared to commonly used STI assays in a large series of patient samples encountered in clinical practice. Results The Alinity m STI assay identified accurately and precisely single and mixed pathogens from an analytical panel of specimens. The Alinity m STI assay demonstrated high overall agreement rates with comparator STI assays (99.6% for CT [n=2,127], 99.2% for NG [n=2,160], 97.1% for MG [n=491], and 99.4% for TV [n=313]). Conclusions The newly developed Alinity m STI assay accurately detects the 4 sexually transmitted target pathogens in various collection devices across clinically relevant specimen types, regardless of single or mixed infection status

    Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013.

    Get PDF
    A human outbreak of West Nile virus (WNV) infection caused by WNV lineage 2 is ongoing in northern Italy. Analysis of six WNV genome sequences obtained from clinical specimens demonstrated similarities with strains circulating in central Europe and Greece and the presence of unique amino acid changes that identify a new viral strain. In addition, WNV lineage 1 Livenza, responsible for a large outbreak in north-eastern Italy in 2012, was fully sequenced from a blood donor during this 2013 outbreak

    Improved molecular laboratory productivity by consolidation of testing on the new random-access analyzer Alinity m

    Get PDF
    Abstract Objectives Automated molecular analyzers have accelerated diagnosis, allowing earlier intervention and better patient follow-up. A recently developed completely automated molecular analyzer, Alinity™ m (Abbott), offers consolidated, continuous, and random-access testing that may improve molecular laboratory workflow. Methods An international, multicenter study compared laboratory workflow metrics across various routine analyzers and Alinity m utilizing assays for human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), high-risk human papillomavirus (HR HPV), and sexually transmitted infection (STI) (Chlamydia trachomatis [CT]/Neisseria gonorrhoeae [NG]/Trichomonas vaginalis [TV]/Mycoplasma genitalium [MG]). Three turnaround times (TATs) were assessed: total TAT (sample arrival to result), sample onboard TAT (sample loading and test starting to result), and processing TAT (sample aspiration to result). Results Total TAT was reduced from days with routine analyzers to hours with Alinity m, independent of requested assays. Sample onboard TATs for standard workflow using routine analyzers ranged from 7 to 32.5 h compared to 2.75–6 h for Alinity m. The mean sample onboard TAT for STAT samples on Alinity m was 2.36 h (±0.19 h). Processing TATs for Alinity m were independent of the combination of assays, with 100% of results reported within 117 min. Conclusions The consolidated, continuous, random-access workflow of Alinity m reduces TATs across various assays and is expected to improve both laboratory operational efficiency and patient care

    Multicenter clinical comparative evaluation of Alinity m HIV-1 assay performance.

    Get PDF
    Abstract Background Accurate, rapid detection of HIV-1 RNA is critical for early diagnosis, treatment decision making, and long-term management of HIV-1 infection. Objective We evaluated the diagnostic performance of the Alinity m HIV-1 assay, which uses a dual target/dual probe design against highly conserved target regions of the HIV-1 genome and is run on the fully automated Alinity m platform. Study design This was an international, multisite study that compared the diagnostic performance of the Alinity m HIV-1 assay to four commercially available HIV-1 assays routinely used in nine independent clinical laboratories. Alinity m HIV-1 assay precision, detectability, and reproducibility was compared across four study sites. Results The Alinity m HIV-1 assay produced comparable results to currently available HIV-1 assays (correlation coefficient >0.995), with an overall bias of -0.1 to 0.10 Log10 copies/mL. The Alinity m HIV-1 assay and its predecessor m2000 HIV-1 assay demonstrated comparable detection of 16 different HIV-1 subtypes (R2 = 0.956). A high level of agreement (>88 %) between all HIV-1 assays was seen near clinical decision points of 1.7 Log10 copies/mL (50 copies/mL) and 2.0 Log10 copies/mL (200 copies/mL). Alinity m HIV-1 assay precision was 0.08 and 0.21 Log10 copies/mL at VLs of 1000 and 50 copies/mL, respectively, with a high level of detectability (≥97 % hit rate) and reproducibility across sites. Conclusions The Alinity m HIV-1 assay provides comparable diagnostic accuracy to current HIV-1 assays, and when run on the Alinity m system, has the capacity to shorten the time between diagnosis and treatment
    • …
    corecore