11,926 research outputs found
Neutron unpolarized structure function F_2^n(x) from deep inelastic scattering off ^{3}He and ^{3}H
The possibility to safely extract the neutron deep inelastic structure
function in the range from joint measurements of
deep inelastic structure functions of and is demonstrated.
While the nuclear structure effects are relevant, the model dependence in this
extraction linked to the interaction is shown to be weak.Comment: 5 pages. Proc. XVIIth Conf. on "Few-Body Problems in Physics", Evora(
Portugal) Sept. 11, 2000. To appear in Nucl. Phys.
Magnetic relaxation of type II superconductors in a mixed state of entrapped and shielded flux
The magnetic relaxation has been investigated in type II superconductors when
the initial magnetic state is realized with entrapped and shielded flux (ESF)
contemporarily. This flux state is produced by an inversion in the magnetic
field ramp rate due to for example a magnetic field overshoot. The
investigation has been faced both numerically and by measuring the magnetic
relaxation in BSCCO tapes. Numerical computations have been performed in the
case of an infinite thick strip and of an infinite slab, showing a quickly
relaxing magnetization in the first seconds. As verified experimentally, the
effects of the overshoot cannot be neglected simply by cutting the first 10-100
seconds in the magnetic relaxation. On the other hand, at very long times, the
magnetic states relax toward those corresponding to field profiles with only
shielded flux or only entrapped flux, depending on the amplitude of the field
change with respect to the full penetration field of the considered
superconducting samples. In addition, we have performed numerical simulations
in order to reproduce the relaxation curves measured on the BSCCO(2223) tapes;
this allowed us to interpret correctly also the first seconds of the
curves.Comment: 9 pages, 12 figures submit to PR
Harmonics of the AC susceptibility as probes to differentiate the various creep models
We measured the temperature dependence of the 1st and the 3rd harmonics of
the AC magnetic susceptibility on some type II superconducting samples at
different AC field amplitudes, hAC. In order to interpret the measurements, we
computed the harmonics of the AC susceptibility as function of the temperature
T, by integrating the non-linear diffusion equation for the magnetic field with
different creep models, namely the vortex glass-collective creep
(single-vortex, small bundle and large bundle) and Kim-Anderson model. We also
computed them by using a non-linear phenomenological I-V characteristics,
including a power law dependence of the pinning potential on hAC. Our
experimental results were compared with the numerically computed ones, by the
analysis of the Cole-Cole plots. This method results more sensitive than the
separate component analysis, giving the possibility to obtain detailed
information about the contribution of the flux dynamic regimes in the magnetic
response of the analysed samples.Comment: 9 pages, 6 figures, submitted to Physica
- …