4 research outputs found

    Testing the Drop-Size Distribution-Based Separation of Stratiform and Convective Rain Using Radar and Disdrometer Data from a Mid-Latitude Coastal Region

    No full text
    Stratiform and convective rain are associated with different microphysical processes and generally produce drop-size distributions (DSDs) with different characteristics. Previous studies using data from (a) a tropical coastal location, (b) a mid-latitude continental location with semi-arid climate, and (c) a sub-tropical continental location, found that the two rain types could be separated in the NW–Dm space, where Dm is the mass-weighted mean diameter and NW is the normalized intercept parameter. In this paper, we investigate the same separation technique using data and observations from a mid-latitude coastal region. Three-minute DSDs from disdrometer measurements are used for the NW- versus Dm-based classification and are compared with simultaneous observations from an S-band polarimetric radar 38 km away from the disdrometer site. Specifically, RHI (range-height indicator) scans over the disdrometer were used for confirmation. Results show that there was no need to modify the separation criteria from previous studies. Three-minute DSDs from the same location were used as input to scattering calculations to derive retrieval equations for NW and Dm for the S-band radar using an improved technique and applied to the RHI scans to identify convective and stratiform rain regions. Two events are shown as illustrative examples

    Drop Size Distribution Measurements in Outer Rainbands of Hurricane Dorian at the NASA Wallops Precipitation-Research Facility

    No full text
    Hurricane rainbands are very efficient rain producers, but details on drop size distributions are still lacking. This study focuses on the rainbands of hurricane Dorian as they traversed the densely instrumented NASA precipitation-research facility at Wallops Island, VA, over a period of 8 h. Drop size distribution (DSD) was measured using a high-resolution meteorological particle spectrometer (MPS) and 2D video disdrometer, both located inside a double-fence wind shield. The shape of the DSD was examined using double-moment normalization, and compared with similar shapes from semiarid and subtropical sites. Dorian rainbands had a superexponential shape at small normalized diameter values similar to those of the other sites. NASA’s S-band polarimetric radar performed range height-indicator (RHI) scans over the disdrometer site, showing some remarkable signatures in the melting layer (bright-band reflectivity peaks of 55 dBZ, a dip in the copolar correlation to 0.85 indicative of 12–15 mm wet snow, and a staggering reflectivity gradient above the 0 °C level of −10 dB/km, indicative of heavy aggregation). In the rain layer at heights < 2.5 km, polarimetric signatures indicated drop break-up as the dominant process, but drops as large as 5 mm were detected during the intense bright-band period
    corecore