52 research outputs found

    Synthesis, photoluminescence and electrochemical properties of 2,7-diarylfluorene derivatives

    Get PDF
    A new class of highly fluorescent 9,9'-bis-(alkyl)-2,7-diarylfluorene having electron withdrawing or electron donating groups on the p-phenyl positions were synthesized and characterized. The highly luminescent fluorene derivatives, 1-6 showed blue emission (376-416 nm), narrow FWHM (~50 nm), high quantum yield (ΦF=0·12-0·87) and short fluorescence lifetimes, τF=0·23-1·14 ns. The HOMO levels of 9,9'-bis-(alkyl)-fluorene were tuned by the ρ-substituents at 2,7-phenyl group. Hammett correlation with EHOMO of these new molecules provides an effective tool to predict the HOMO level of similar molecules prior to the synthesis. These data indicate that they are useful as emitting materials for organic light emitting devices, OLEDs

    Synthesis, photophysical and electrochemical properties of 2,8-diaryl-dibenzothiophene derivatives for organic electronics

    Get PDF
    A series of 2,8-p-diaryldibenzothiophene derivatives were synthesized and characterized. These molecules have electron withdrawing or electron donating groups at the para phenyl position, which alters the electronic properties of these derivatives. The quantum yield, fluorescence lifetime, singlet, triplet and EHOMO energy levels of these compounds were determined by fluorescence, phosphorescence and cyclic voltammetry. A plot of Hammett constants of the para substituents vs EHOMO revealed a linear relationship. The usefulness of these molecules in organic light emitting diodes, OLEDs is discussed vis-à-vis the energy levels and properties

    Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells

    Get PDF
    Organic-inorganic perovskites are currently one of the hottest topics in photovoltaic (PV) research, with power conversion efficiencies (PCEs) of cells on a laboratory scale already competing with those of established thin-film PV technologies. Most enhancements have been achieved by improving the quality of the perovskite films, suggesting that the optimization of film formation and crystallization is of paramount importance for further advances. Here, we review the various techniques for film formation and the role of the solvents and precursors in the processes. We address the role chloride ions play in film formation of mixed-halide perovskites, which is an outstanding question in the field. We highlight the material properties that are essential for high-efficiency operation of solar cells, and identify how further improved morphologies might be achieved

    Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex

    Get PDF
    Synthesis, structure, optical absorption, emission and electroluminescence properties of a new blue emitting Al complex, namely, bis-(2-amino-8-hydroxyquinolinato), acetylacetonato Al(III) are reported. Multilayer OLED using the Al complex showed blue emission at 465 nm, maximum brightness of ~ 425 cd/m2 and maximum current efficiency of 0.16 cd/A. Another multilayer OLED using the Al complex doped with phosphorescent Ir complex showed 'white' light emission, CIE coordinate (0.41, 0.35), maximum brightness of ~ 970 cd/m2 and maximum current efficiency of 0.53 cd/A

    In Operando, Photovoltaic, and Microscopic Evaluation of Recombination Centers in Halide Perovskite-Based Solar Cells

    Get PDF
    The origin of the low densities of electrically active defects in Pb halide perovskite (HaP), a crucial factor for their use in photovoltaics, light emission, and radiation detection, remains a matter of discussion, in part because of the difficulty in determining these densities. Here, we present a powerful approach to assess the defect densities, based on electric field mapping in working HaP-based solar cells. The minority carrier diffusion lengths were deduced from the electric field profile, measured by electron beam-induced current (EBIC). The EBIC method was used earlier to get the first direct evidence for the n-i-p junction structure, at the heart of efficient HaP-based PV cells, and later by us and others for further HaP studies. This manuscript includes EBIC results on illuminated cell cross sections (in operando) at several light intensities to compare optoelectronic characteristics of different cells made by different groups in several laboratories. We then apply a simple, effective single-level defect model that allows deriving the densities (Nr) of the defect acting as recombination center. We find Nr ≈ 1 × 1013 cm–3 for mixed A cation lead bromide-based HaP films and ∼1 × 1014 cm–3 for MAPbBr3(Cl). As EBIC photocurrents are similar at the grain bulk and boundaries, we suggest that the defects are at the interfaces with selective contacts rather than in the HaP film. These results are relevant for photovoltaic devices as the EBIC responses distinguish clearly between high- and low-efficiency devices. The most efficient devices have n-i-p structures with a close-to-intrinsic HaP film, and the selective contacts then dictate the electric field strength throughout the HaP absorber.We thank the Yotam project, Ullmann Family Foundation, Dears Foundation, the WIS’ Sustainability And Energy Research Initiative, SAERI, and the Minerva Centre for Self-Repairing Systems for Energy & Sustainability for support at the Weizmann Institute and the Israel Ministry of Energy and Infrastructure for the work at Bar-Ilan University. A.Z. thanks Katya Rechav for the FIB sample preparation, Ifat Kaplan-Asheri for assisting with EBIC operation, and Isaac Balberg (Hebrew University of Jerusalem) for fruitful discussions

    Mode-selective vibrational control of charge transport in ππ-conjugated molecular materials

    Get PDF
    The soft character of organic materials leads to strong coupling between molecular nuclear and electronic dynamics. This coupling opens the way to control charge transport in organic electronic devices by inducing molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such control has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be controlled by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1500-1700 cm1^{-1} region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. Vibrational control thus presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.This work was supported by the Netherlands Organization for Scientific Research (NWO) through the ‘Stichting voor Fundamenteel Onderzoek der Materie’ (FOM) research programme. A.A.B. also acknowledges a VENI grant from the NWO. A.A.B. is currently a Royal Society University Research Fellow. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639750). R.L. acknowledges a Marie Curie IE Fellowship from the EU, held at the Weizmann Institute (FP7-PEOPLE-2011-IEF no. 29866). X.Y. thanks the Council for Higher Education (Israel) for a PBC programme postdoctoral research fellowship. V.C. thanks support from the Office of Naval Research and MURI Center on Advanced Molecular Photovoltaics, award No. N00014-14-1-0580. J.L.B. acknowledges support by competitive research funding from King Abdullah University of Science and Technology (KAUST) and by ONR Global, Grant N62909-15-1-2003. D.C. thanks the Israel Science Foundation Centre of Excellence program, the Grand Centre for Sensors and Security and the Schmidt Minerva Centre for Supramolecular Architecture for partial support. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research.This is the final published version. It first appeared at http://dx.doi.org/10.1038/ncomms888
    corecore