638 research outputs found

    Designing CALL for learning Chinese characters

    Get PDF
    Despite the enormity of its quantity, printed or written forms of Chinese characters are composed from a limited number of common components. For example, the characters for pond( ), lake( ), stream( ), river ( ), sea( ) and ocean( ) all contain a component in common, a three-dot component representing water. When this clue is explicitly highlighted to students, the learning of Chinese characters can be greatly enhanced. Using a computer to help students to develop this kind of structural awareness about language learning has not yet been thoroughly examined. This paper reports on the design of CALL software based on a pedagogic method which helps students to develop the higher order skills to analyse and categorise Chinese characters by using components. The result of the classroom experiment has shown supportive evidence on the feasibility and the need of integrating the software with an affective and contextual way of teaching Chinese characters.postprin

    Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome

    Get PDF
    BACKGROUND: The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs. RESULTS: Four positively regulated and two negatively regulated genes were identified by transposon mutagenesis including genes potentially involved in iron transport and virulence. The promoter regions of selected CepR regulated genes and site directed mutagenesis of the cepI promoter were used to predict a consensus cep box sequence for CepR binding. The first-generation consensus sequence for the cep box was used to identify putative cep boxes in the genome sequence. Eight potential CepR regulated genes were chosen and the expression of their promoters analyzed. Six of the eight were shown to be regulated by CepR. A second generation motif was created from the promoters of these six genes in combination with the promoters of cepI, zmpA, and two of the CepR regulated genes identified by transposon mutagenesis. A search of the B. cenocepacia J2315 genome with the new motif identified 55 cep boxes in 65 promoter regions that may be regulated by CepR. CONCLUSION: Using transposon mutagenesis and bioinformatics expression of twelve new genes have been determined to be regulated by the CepIR quorum sensing system. A cep box consensus sequence has been developed based on the predicted cep boxes of ten CepR regulated genes. This consensus cep box has led to the identification of over 50 new genes potentially regulated by the CepIR quorum sensing system

    Competitive Binding Between Id1 and E2F1 to Cdc20 Regulates E2F1 Degradation and Thymidylate Synthase Expression to Promote Esophageal Cancer Chemoresistance

    Get PDF
    Purpose: Chemoresistance is a major obstacle in cancer therapy. We found that fluorouracil (5-FU)-resistant esophageal squamous cell carcinoma cell lines, established through exposure to increasing concentrations of 5-FU, showed upregulation of Id1, IGF2, and E2F1. We hypothesized that these genes may play an important role in cancer chemoresistance. Experimental Design: In vitro and in vivo functional assays were performed to study the effects of Id1–E2F1–IGF2 signaling in chemoresistance. Quantitative real-time PCR, Western blotting, immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays were used to investigate the molecular mechanisms by which Id1 regulates E2F1 and by which E2F1 regulates IGF2. Clinical specimens, tumor tissue microarray, and Gene Expression Omnibus datasets were used to analyze the correlations between gene expressions and the relationships between expression profiles and patient survival outcomes. Results: Id1 conferred 5-FU chemoresistance through E2F1-dependent induction of thymidylate synthase expression in esophageal cancer cells and tumor xenografts. Mechanistically, Id1 protects E2F1 protein from degradation and increases its expression by binding competitively to Cdc20, whereas E2F1 mediates Id1-induced upregulation of IGF2 by binding directly to the IGF2 promoter and activating its transcription. The expression level of E2F1 was positively correlated with that of Id1 and IGF2 in human cancers. More importantly, concurrent high expression of Id1 and IGF2 was associated with unfavorable patient survival in multiple cancer types. Conclusions: Our findings define an intricate E2F1-dependent mechanism by which Id1 increases thymidylate synthase and IGF2 expressions to promote cancer chemoresistance. The Id1–E2F1–IGF2 regulatory axis has important implications for cancer prognosis and treatment. ©2015 AACR.postprin

    In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists

    Get PDF
    GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β<sub>2</sub>-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling.</p> <p>Results</p> <p>C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface.</p> <p>Conclusions</p> <p>We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer.</p

    Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Cancer is a severe condition of uncontrolled cell division that results in a tumor formation that spreads to other tissues of the body. Therefore, the development of new medication and treatment methods for this is in demand. Classification of microarray data plays a vital role in handling such situations. The relevant gene selection is an important step for the classification of microarray data. This work presents gene encoder, an unsupervised two-stage feature selection technique for the cancer samples’ classification. The first stage aggregates three filter methods, namely principal component analysis, correlation, and spectral-based feature selection techniques. Next, the genetic algorithm is used, which evaluates the chromosome utilizing the autoencoder-based clustering. The resultant feature subset is used for the classification task. Three classifiers, namely support vector machine, k-nearest neighbors, and random forest, are used in this work to avoid the dependency on any one classifier. Six benchmark gene expression datasets are used for the performance evaluation, and a comparison is made with four state-of-the-art related algorithms. Three sets of experiments are carried out to evaluate the proposed method. These experiments are for the evaluation of the selected features based on sample-based clustering, adjusting optimal parameters, and for selecting better performing classifier. The comparison is based on accuracy, recall, false positive rate, precision, F-measure, and entropy. The obtained results suggest better performance of the current proposal
    corecore