30 research outputs found

    Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment

    Get PDF
    In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC

    Potential for airborne transmission of infection in the waiting areas of healthcare premises: stochastic analysis using a Monte Carlo model

    Get PDF
    BACKGROUND: Although many infections that are transmissible from person to person are acquired through direct contact between individuals, a minority, notably pulmonary tuberculosis (TB), measles and influenza are known to be spread by the airborne route. Airborne infections pose a particular threat to susceptible individuals whenever they are placed together with the index case in confined spaces. With this in mind, waiting areas of healthcare facilities present a particular challenge, since large numbers of people, some of whom may have underlying conditions which predispose them to infection, congregate in such spaces and can be exposed to an individual who may be shedding potentially pathogenic microorganisms. It is therefore important to understand the risks posed by infectious individuals in waiting areas, so that interventions can be developed to minimise the spread of airborne infections. METHOD: A stochastic Monte Carlo model was constructed to analyse the transmission of airborne infection in a hypothetical 132 m3 hospital waiting area in which occupancy levels, waiting times and ventilation rate can all be varied. In the model the Gammaitoni-Nucci equation was utilized to predict probability of susceptible individuals becoming infected. The model was used to assess the risk of transmission of three infectious diseases, TB, influenza and measles. In order to allow for stochasticity a random number generator was applied to the variables in the model and a total of 10000 individual simulations were undertaken. The mean quanta production rates used in the study were 12.7, 100 and 570 per hour for TB, influenza and measles, respectively. RESULTS: The results of the study revealed the mean probability of acquiring a TB infection during a 30-minute stay in the waiting area to be negligible (i.e. 0.0034), while that for influenza was an order of magnitude higher at 0.0262. By comparison the mean probability of acquiring a measles infection during the same period was 0.1349. If the duration of the stay was increased to 60 minutes then these values increased to 0.0087, 0.0662 and 0.3094, respectively. CONCLUSION: Under normal circumstances the risk of acquiring a TB infection during a visit to a hospital waiting area is minimal. Likewise the risks associated with the transmission of influenza, although an order of magnitude greater than those for TB, are relatively small. By comparison, the risks associated with measles are high. While the installation of air disinfection may be beneficial, when seeking to prevent the transmission of airborne viral infection it is important to first minimize waiting times and the number of susceptible individuals present before turning to expensive technological solutions

    Experiences With and Attitudes Toward Death and Dying Among Homeless Persons

    Get PDF
    BACKGROUND: Homeless persons face many barriers to health care, have few resources, and experience high death rates. They live lives of disenfranchisement and neglect. Few studies have explored their experiences and attitudes toward death and dying. Unfortunately, studies done in other populations may not apply to homeless persons. Exploring these experiences and attitudes may provide insight into life, health care, and end-of-life (EOL) concerns of this population. OBJECTIVE: To explore the experiences and attitudes toward death and dying among homeless persons. DESIGN: Qualitative study utilizing focus groups. PARTICIPANTS: Fifty-three homeless persons recruited from homeless service agencies. MEASUREMENTS: In-depth interviews, which were audiotaped and transcribed. RESULTS: We present seven themes, some of which are previously unreported. Homeless persons described many significant experiences with death and dying, and many participants suffered losses while very young. These encounters influenced participants’ attitudes toward risks and risky behavior: e.g., for some, these experiences provided justification for high-risk behaviors and influenced their behaviors while living on the streets. For others, they may be associated with their homelessness. Finally, these experiences informed their attitudes toward death and dying as well as EOL care; homeless persons believe that care will be poor at the EOL. CONCLUSIONS: Findings from this study have implications for addressing social services, health promotion, prevention, and EOL care for homeless persons, as well as for others who are poor and disenfranchised
    corecore