19 research outputs found

    Facilitation of postural limb reflexes in spinal rabbits by serotonergic agonist administration, epidural electrical stimulation, and postural training.

    No full text
    In quadrupeds, spinalization in the thoracic region severely impairs postural control in the hindquarters. The goal of this study was to improve postural functions in chronic spinal rabbits by regular application of different factors: intrathecal injection of the 5-HT(2) agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), epidural electrical spinal cord stimulation (EES), and specific postural training (SPT). The factors were used either alone (SPT group) or in combination (DOI+SPT, EES+SPT, and DOI+EES+SPT groups) or not used (control group). It was found that in none of these groups did normal postural corrective movements in response to lateral tilts of the supporting platform reappear within the month of treatment. In control group, reduced irregular electromyographic (EMG) responses, either correctly or incorrectly phased in relation to tilts, were observed. By contrast, in DOI+SPT and EES+SPT groups, a gradual threefold increase in the proportion of correctly phased EMG responses (compared with control) was observed. The increase was smaller in DOI+EES+SPT and SPT groups. Dissimilarly to these long-term effects, short-term effects of DOI and EES were weak or absent. In addition, gradual development of oscillatory EMG activity in the responses to tilts, characteristic for the control group, was retarded in DOI+SPT, EES+SPT, DOI+EES+SPT, and SPT groups. Thus regular application of the three tested factors and their combinations caused progressive, long-lasting plastic changes in the isolated spinal networks, resulting in the facilitation of spinal postural reflexes and in the retardation of the development of oscillatory EMG activity. The facilitated reflexes, however, were insufficient for normal postural functions

    A commanding control of behavior

    No full text
    Ever get the feeling that you must move quickly just to keep up with this fast-paced world? If it is any consolation, you are not alone. When challenged with a constantly moving visual scene, zebrafish try to keep up by swimming in the direction of the perceived motion. An article in the current issue examines how this behavior may be encoded in the brain (1)....

    Activity of motor cortex neurons during backward locomotion

    No full text
    Forward walking (FW) and backward walking (BW) are two important forms of locomotion in quadrupeds. Participation of the motor cortex in the control of FW has been intensively studied, whereas cortical activity during BW has never been investigated. The aim of this study was to analyze locomotion-related activity of the motor cortex during BW and compare it with that during FW. For this purpose, we recorded activity of individual neurons in the cat during BW and FW. We found that the discharge frequency in almost all neurons was modulated in the rhythm of stepping during both FW and BW. However, the modulation patterns during BW and FW were different in 80% of neurons. To determine the source of modulating influences (forelimb controllers vs. hindlimb controllers), the neurons were recorded not only during quadrupedal locomotion but also during bipedal locomotion (with either forelimbs or hindlimbs walking), and their modulation patterns were compared. We found that during BW (like during FW), modulation in some neurons was determined by inputs from limb controllers of only one girdle, whereas the other neurons received inputs from both girdles. The combinations of inputs could depend on the direction of locomotion. Most often (in 51% of forelimb-related neurons and in 34% of the hindlimb-related neurons), the neurons received inputs only from their own girdle when this girdle was leading and from both girdles when this girdle was trailing. This reconfiguration of inputs suggests flexibility of the functional roles of individual cortical neurons during different forms of locomotion
    corecore