14 research outputs found

    Role of Coenzyme Q10 in Health and Disease: An Update on the Last 10 Years (2010–2020)

    Get PDF
    The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10’s role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance

    Ubiquinol supplementation in elderly patients undergoing aortic valve replacement: biochemical and clinical aspects

    Get PDF
    Epidemiological data show a rise in the mean age of patients affected by heart disease undergoing cardiac surgery. Senescent myocardium reduces the tolerance to ischemic stress and there are indications about age associated deficit in post-operative cardiac performance. Coenzyme Q10 (CoQ10), and more specifically its reduced form ubiquinol (QH), improve several conditions related to bioenergetic deficit or increased exposure to oxidative stress. This trial (Eudra-CT 2009-015826-13) evaluated the clinical and biochemical effects of ubiquinol in 50 elderly patients affected by severe aortic stenosis undergoing aortic valve replacement and randomized to either placebo or 400 mg/day ubiquinol from 7 days before to 5 days after surgery. Plasma and cardiac tissue CoQ10 levels and oxidative status, circulating troponin I, CK-MB (primary endpoints), IL-6 and S100B were assessed. Moreover, main cardiac adverse effects, NYHA class, contractility and myocardial hypertrophy (secondary endpoints) were evaluated during a 6-month follow-up visit. Ubiquinol treatment counteracted the post-operative plasma CoQ10 decline (p<0.0001) and oxidation (p=0.038) and curbed the post-operative increase in troponin I (QH, 1.90 [1.47-2.48] ng/dL; placebo, 4.03 [2.45-6.63] ng/dL; p=0.007) related to cardiac surgery. Moreover, ubiquinol prevented the adverse outcomes that might have been associated with defective left ventricular ejection fraction recovery in elderly patients

    Ubiquinol supplementation in elderly patients undergoing aortic valve replacement: biochemical and clinical aspects.

    No full text
    Epidemiological data show a rise in the mean age of patients affected by heart disease undergoing cardiac surgery. Senescent myocardium reduces the tolerance to ischemic stress and there are indications about age-associated deficit in post-operative cardiac performance. Coenzyme Q10 (CoQ10), and more specifically its reduced form ubiquinol (QH), improve several conditions related to bioenergetic deficit or increased exposure to oxidative stress. This trial (Eudra-CT 2009-015826-13) evaluated the clinical and biochemical effects of ubiquinol in 50 elderly patients affected by severe aortic stenosis undergoing aortic valve replacement and randomized to either placebo or 400 mg/day ubiquinol from 7 days before to 5 days after surgery. Plasma and cardiac tissue CoQ10 levels and oxidative status, circulating troponin I, CK-MB (primary endpoints), IL-6 and S100B were assessed. Moreover, main cardiac adverse effects, NYHA class, contractility and myocardial hypertrophy (secondary endpoints) were evaluated during a 6-month follow-up visit. Ubiquinol treatment counteracted the post-operative plasma CoQ10 decline (p<0.0001) and oxidation (p=0.038) and curbed the post-operative increase in troponin I (QH, 1.90 [1.47–2.48] ng/dL; placebo, 4.03 [2.45–6.63] ng/dL; p=0.007) related to cardiac surgery. Moreover, ubiquinol prevented the adverse outcomes that might have been associated with defective left ventricular ejection fraction recovery in elderly patients

    Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside

    No full text
    corecore