1,123 research outputs found

    Granulocyte-activating mediators (GRAM)

    Get PDF
    In the present study we investigated the capability of human epidermal cells to generate granulocyte-activating mediators (GRAM). It could be shown that human epidermal cells as well as an epidermoid carcinoma cell line (A431) produce an epidermal cell-derived granulocyte-activating mediator (EC-GRAM) which stimulates human granulocytes to release significant levels of toxic oxygen radicals as measured by a lucigenin-dependent chemiluminescence (CL). For further characterization of EC-GRAM the A431 cell line was used. Supernatants of A431 cells usually contained maximal EC-GRAM levels within 24 h of incubation. Factor production was enhanced by bacterial lipopolysaccharide (LPS), but not by silica particles and PHA. Moreover, freeze-thaw lysates of A431 cells and extracts of heat-separated human epidermis contained significant levels of EC-GRAM. Preincubation of granulocytes with EC-GRAM resulted in an enhanced response to subsequent stimulation with the chemotactic peptide f-met-phe. In contrast EC-GRAM did not affect the response to PMA or zymosan particles. However, EC-GRAM treated granulocytes were unresponsive to restimulation with EC-GRAM. Upon high performance liquid chromatography (HPLC) gel filtration EC-GRAM eluted within two major peaks exhibiting a molecular weight of 17 kD and 44 kD. According to its biochemical and biological properties EC-GRAM can be separated from other cytokines such as ETAF/-interleukin 1, interleukin 2, interferons, granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor (TNF). However, an antibody to human GM-CSF neutralized about 75% of the activity. These results indicate that EC-GRAM activity stimulating the generation of reactive oxygen species by granulocytes is probably due to GM-CSF

    Flopping-mode electric dipole spin resonance

    Full text link
    Traditional approaches to controlling single spins in quantum dots require the generation of large electromagnetic fields to drive many Rabi oscillations within the spin coherence time. We demonstrate "flopping-mode" electric dipole spin resonance, where an electron is electrically driven in a Si/SiGe double quantum dot in the presence of a large magnetic field gradient. At zero detuning, charge delocalization across the double quantum dot enhances coupling to the drive field and enables low power electric dipole spin resonance. Through dispersive measurements of the single electron spin state, we demonstrate a nearly three order of magnitude improvement in driving efficiency using flopping-mode resonance, which should facilitate low power spin control in quantum dot arrays

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    Discrimination of Motor Imagery-Induced EEG Patterns in Patients with Complete Spinal Cord Injury

    Get PDF
    EEG-based discrimination between different motor imagery states has been subject of a number of studies in healthy subjects. We investigated the EEG of 15 patients with complete spinal cord injury during imagined right hand, left hand, and feet movements. In detail we studied pair-wise discrimination functions between the 3 types of motor imagery. The following classification accuracies (mean ± SD) were obtained: left versus right hand 65.03% ± 8.52, left hand versus feet 68.19% ± 11.08, and right hand versus feet 65.05% ± 9.25. In 5 out of 8 paralegic patients, the discrimination accuracy was greater than 70% but in only 1 out of 7 tetraplagic patients. The present findings provide evidence that in the majority of paraplegic patients an EEG-based BCI could achieve satisfied results. In tetraplegic patients, however, it is expected that extensive training-sessions are necessary to achieve a good BCI performance at least in some subjects

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Flopping-mode electric dipole spin resonance

    Get PDF
    Traditional approaches to controlling single spins in quantum dots require the generation of large electromagnetic fields to drive many Rabi oscillations within the spin coherence time. We demonstrate “flopping-mode” electric dipole spin resonance, where an electron is electrically driven in a Si/SiGe double quantum dot in the presence of a large magnetic field gradient. At zero detuning, charge delocalization across the double quantum dot enhances coupling to the drive field and enables low-power electric dipole spin resonance. Through dispersive measurements of the single-electron spin state, we demonstrate a nearly three order of magnitude improvement in driving efficiency using flopping-mode resonance, which should facilitate low-power spin control in quantum dot arrays
    corecore