20 research outputs found

    Neuronal characteristics of small-cell lung cancer

    Get PDF
    Wide ranging experimental evidence suggests that human small-cell lung cancer (SCLC) has a number of molecular and subcellular characteristics normally associated with neurones. This review outlines and discusses these characteristics in the light of recent developments in the field. Emphasis is placed upon neuronal cell adhesion molecules, neurone-restrictive silencer factor, neurotransmitters/peptides and voltage-gated ion, especially Na+ channels. The hypothesis is put forward that acquisition of such characteristics and the membrane ‘excitability' that would follow can accelerate metastatic progression. The clinical potential of the neuronal characteristics of SCLC, in particular ion channel expression/activity, is discussed in relation to possible novel diagnostic and therapeutic modalities

    Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers

    Get PDF
    <p>Abstract</p> <p>Methods</p> <p>We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10 adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5 samples of normal lung tissue (NT). The European and American methodological quality guidelines for microarray experiments were followed, including the stipulated use of laser capture microdissection for separation and purification of the lung cancer tumor cells from surrounding tissue.</p> <p>Results</p> <p>Based on differentially expressed genes, different lung cancer samples could be distinguished from each other and from normal lung tissue using hierarchical clustering. Comparing AC, SCC and SCLC with NT, we found 205, 335 and 404 genes, respectively, that were at least 2-fold differentially expressed (estimated false discovery rate: < 2.6%). Different lung cancer subtypes had distinct molecular phenotypes, which also reflected their biological characteristics. Differentially expressed genes in human lung tumors which may be of relevance in the respective lung cancer subtypes were corroborated by quantitative real-time PCR.</p> <p>Genetic programming (GP) was performed to construct a classifier for distinguishing between AC, SCC, SCLC, and NT. Forty genes, that could be used to correctly classify the tumor or NT samples, have been identified. In addition, all samples from an independent test set of 13 further tumors (AC or SCC) were also correctly classified.</p> <p>Conclusion</p> <p>The data from this research identified potential candidate genes which could be used as the basis for the development of diagnostic tools and lung tumor type-specific targeted therapies.</p

    Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Get PDF
    BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration

    Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Get PDF
    BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Therapeutic potential for phenytoin : targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer

    Get PDF
    Voltage-gated Na(+) channels (VGSCs) are heteromeric membrane protein complexes containing pore-forming α subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in excitable cells, including neurons and muscle cells, where they mediate action potential firing, neurite outgrowth, pathfinding, and migration. VGSCs are also expressed in metastatic cells from a number of cancers. The Na(v)1.5 α subunit (encoded by SCN5A) is expressed in breast cancer (BCa) cell lines, where it enhances migration and invasion. We studied the expression of SCN5A in BCa array data, and tested the effect of the VGSC-blocking anticonvulsant phenytoin (5,5-diphenylhydantoin) on Na(+) current, migration, and invasion in BCa cells. SCN5A was up-regulated in BCa samples in several datasets, and was more highly expressed in samples from patients who had a recurrence, metastasis, or died within 5 years. SCN5A was also overexpressed as an outlier in a subset of samples, and associated with increased odds of developing metastasis. Phenytoin inhibited transient and persistent Na(+) current recorded from strongly metastatic MDA-MB-231 cells, and this effect was more potent at depolarized holding voltages. It may thus be an effective VGSC-blocking drug in cancer cells, which typically have depolarized membrane potentials. At a concentration within the therapeutic range used to treat epilepsy, phenytoin significantly inhibited the migration and invasion of MDA-MB-231 cells, but had no effect on weakly metastatic MCF-7 cells, which do not express Na(+) currents. We conclude that phenytoin suppresses Na(+) current in VGSC-expressing metastatic BCa cells, thus inhibiting VGSC-dependent migration and invasion. Together, our data support the hypothesis that SCN5A is up-regulated in BCa, favoring an invasive/metastatic phenotype. We therefore propose that repurposing existing VGSC-blocking therapeutic drugs should be further investigated as a potential new strategy to improve patient outcomes in metastatic BCa
    corecore