217 research outputs found

    A model building exercise of mortality risk for Taiwanese women with breast cancer

    Get PDF
    Abstract Background The accurate estimation of outcome in patients with malignant disease is an essential component of the optimal treatment, decision-making and patient counseling processes. The prognosis and disease outcome of breast cancer patients can differ according to geographic and ethnic factors. To our knowledge, to date these factors have never been validated in a homogenous loco-regional patient population, with the aim of achieving accurate predictions of outcome for individual patients. To clarify this topic, we created a new comprehensive prognostic and predictive model for Taiwanese breast cancer patients based on a range of patient-related and various clinical and pathological-related variables. Methods Demographic, clinical, and pathological data were analyzed from 1 137 patients with breast cancer who underwent surgical intervention. A survival prediction model was used to allow analysis of the optimal combination of variables. Results The area under the receiver operating characteristic (ROC) curve, as applied to an independent validation data set, was used as the measure of accuracy. Results were compared by comparing the area under the ROC curve. Conclusions our model building exercise of mortality risk was able to predict disease outcome for individual patients with breast cancer. This model could represent a highly accurate prognostic tool for Taiwanese breast cancer patients.</p

    The Tuberculin Skin Test (TST) Is Affected by Recent BCG Vaccination but Not by Exposure to Non-Tuberculosis Mycobacteria (NTM) during Early Life

    Get PDF
    The tuberculin skin test (TST) is widely used in TB clinics to aid Mycobacterium tuberculosis (M.tb) diagnosis, but the definition and the significance of a positive test in very young children is still unclear. This study compared the TST in Gambian children at 4½ months of age who either received BCG vaccination at birth (Group 1) or were BCG naïve (Group 2) in order to examine the role of BCG vaccination and/or exposure to environmental mycobacteria in TST reactivity at this age. Nearly half of the BCG vaccinated children had a positive TST (≥5 mm) whereas all the BCG naïve children were non-reactive, confirming that recent BCG vaccination affects TST reactivity. The BCG naïve children demonstrated in vitro PPD responses in peripheral blood in the absence of TST reactivity, supporting exposure to and priming by environmental mycobacterial antigens. Group 2 were then vaccinated at 4½ months of age and a repeat TST was performed at 20–28 months of age. Positive reactivity (≥5 mm) was evident in 11.1% and 12.5% infants from Group 1 and Group 2 respectively suggesting that the timing of BCG vaccination had little effect by this age. We further assessed for immune correlates in peripheral blood at 4½ months of age. Mycobacterial specific IFNγ responses were greater in TST responders than in non-responders, although the size of induration did not correlate with IFNγ. However the IFNγ: IL-10 ratio positively correlated with TST induration suggesting that the relationship between PPD induced IFNγ and IL-10 in the peripheral blood may be important in controlling TST reactivity. Collectively these data provide further insights into how the TST is regulated in early life, and how a positive response might be interpreted

    Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Get PDF
    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-α, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with 99mTc or 111In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform ‘evidence-based biological therapy’ of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and follow-up

    Associations between SNPs in candidate immune-relevant genes and rubella antibody levels: a multigenic assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms of immune response are structured within a highly complex regulatory system. Genetic associations with variation in the immune response to rubella vaccine have typically been assessed one locus at a time. We simultaneously assessed the associations between 726 SNPs tagging 84 candidate immune response genes and rubella-specific antibody levels. Blood samples were obtained from 714 school-aged children who had received two doses of MMR vaccine. Associations between rubella-specific antibody levels and 726 candidate tagSNPs were assessed both one SNP at a time and in a variety of multigenic analyses.</p> <p>Results</p> <p>Single-SNP assessments identified 4 SNPs that appeared to be univariately associated with rubella antibody levels: rs2844482 (p = 0.0002) and rs2857708 (p = 0.001) in the 5'UTR of the LTA gene, rs7801617 in the 5'UTR of the IL6 gene (p = 0.0005), and rs4787947 in the 5'UTR of the IL4R gene (p = 0.002). While there was not significant evidence in favor of epistatic genetic associations among the candidate SNPs, multigenic analyses identified 29 SNPs significantly associated with rubella antibody levels when selected as a group (p = 0.017). This collection of SNPs included not only those that were significant univariately, but others that would not have been identified if only considered in isolation from the other SNPs.</p> <p>Conclusions</p> <p>For the first time, multigenic assessment of associations between candidate SNPs and rubella antibody levels identified a broad number of genetic associations that would not have been deemed important univariately. It is important to consider approaches like those applied here in order to better understand the full genetic complexity of response to vaccination.</p

    BCG vaccination: a role for vitamin D?

    Get PDF
    BCG vaccination is administered in infancy in most countries with the aim of providing protection against tuberculosis. There is increasing interest in the role of vitamin D in immunity to tuberculosis. This study objective was to determine if there was an association between circulating 25(OH)D concentrations and BCG vaccination status and cytokine responses following BCG vaccination in infants

    Multiple Phenotypes in Adult Mice following Inactivation of the Coxsackievirus and Adenovirus Receptor (Car) Gene

    Get PDF
    To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo

    Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    Get PDF
    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine

    Characterization of Genome-Wide Association-Identified Variants for Atrial Fibrillation in African Americans

    Get PDF
    Despite a greater burden of risk factors, atrial fibrillation (AF) is less common among African Americans than European-descent populations. Genome-wide association studies (GWAS) for AF in European-descent populations have identified three predominant genomic regions associated with increased risk (1q21, 4q25, and 16q22). The contribution of these loci to AF risk in African American is unknown.We studied 73 African Americans with AF from the Vanderbilt-Meharry AF registry and 71 African American controls, with no history of AF including after cardiac surgery. Tests of association were performed for 148 SNPs across the three regions associated with AF, and 22 SNPs were significantly associated with AF (P<0.05). The SNPs with the strongest associations in African Americans were both different from the index SNPs identified in European-descent populations and independent from the index European-descent population SNPs (r(2)<0.40 in HapMap CEU): 1q21 rs4845396 (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.13-0.67, P = 0.003), 4q25 rs4631108 (OR 3.43, 95% CI 1.59-7.42, P = 0.002), and 16q22 rs16971547 (OR 8.1, 95% CI 1.46-45.4, P = 0.016). Estimates of European ancestry were similar among cases (23.6%) and controls (23.8%). Accordingly, the probability of having two copies of the European derived chromosomes at each region did not differ between cases and controls.Variable European admixture at known AF loci does not explain decreased AF susceptibility in African Americans. These data support the role of 1q21, 4q25, and 16q22 variants in AF risk for African Americans, although the index SNPs differ from those identified in European-descent populations
    corecore