32 research outputs found

    Antioxidant defence of L-glutamine on mitochondrial function in experimentally induced myocardial infarction in rats

    Get PDF
    Myocardial infarction is a major public health concern and the leading cause of death all over the world. A better understanding of the processes involved in myocardial infarction has stimulated the search for biomolecules, which could limit the myocardial injury. We determined the protective activity of L-glutamine on mitochondrial function in isoprenaline-induced myocardial infarction in rats, an animal model of myocardial infarction in man. Oral pre-treatment with glutamine significantly inhibited the isoprenaline-induced changes in the levels of troponin T and homocysteine in the plasma. It conserved the activities of tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase) and respiratory marker enzyme (NADH dehydrogenase) and the level of myocardial ATP content at levels comparable to that of normal controls. It also attenuated isoprenaline-induced oxidative stress in rat mitochondria and preserved the antioxidant defence system at near normal. The results indicate that the cardioprotective effect of glutamine can be correlated directly with its ability to activate the energy status and antioxidant defence system.Keywords: isoprenalin

    Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds

    No full text
    Annapoorna Mohandas,* Sudheesh Kumar PT,* Biswas Raja, Vinoth-Kumar Lakshmanan, Rangasamy Jayakumar Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India *These authors contributed equally to this work Abstract: Alginate hydrogel/zinc oxide nanoparticles (nZnO) composite bandage was developed by freeze-dry method from the mixture of nZnO and alginate hydrogel. The developed composite bandage was porous with porosity at a range of 60%–70%. The swelling ratios of the bandages decreased with increasing concentrations of nZnO. The composite bandages with nZnO incorporation showed controlled degradation profile and faster blood clotting ability when compared to the KALTOSTAT® and control bandages without nZnO. The prepared composite bandages exhibited excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and methicillin resistant S. aureus (MRSA). Cytocompatibility evaluation of the prepared composite bandages done on human dermal fibroblast cells by Alamar assay and infiltration studies proved that the bandages have a non-toxic nature at lower concentrations of nZnO whereas slight reduction in viability was seen with increasing nZnO concentrations. The qualitative analysis of ex-vivo re-epithelialization on porcine skin revealed keratinocyte infiltration toward wound area for nZnO alginate bandages. Keywords: alginate, hydrogel, ZnO nanoparticle, hemostatic, antimicrobial activity, wound healin
    corecore