1,254 research outputs found

    Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer.

    Get PDF
    Epidermal growth factor receptor (EGFR) mutations are the second most common oncogenic driver event in non-small cell lung cancer (NSCLC). Classical activating mutations (exon 19 deletions and the L858R point mutation) comprise the vast majority of EGFR mutations and are well defined as strong predictors for good clinical response to EGFR tyrosine kinase inhibitors (EGFRi). However, low frequency mutations including point mutations, deletions, insertions and duplications occur within exons 18-25 of the EGFR gene in NSCLC and are associated with poorer responses to EGFRi. Despite an increased uptake of more sensitive detection methods to identify rare EGFR mutations in patients, our understanding of the biology of these rare EGFR mutations is poor compared to classical mutations. In particular, clinical data focused on these mutations is lacking due to their rarity and challenges in trial recruitment, resulting in an absence of effective treatment strategies for many low frequency EGFR mutations. In this review, we describe the structural and mechanistic features of rare EGFR mutations in NSCLC and discuss the preclinical and clinical evidence for EGFRi response for individual rare EGFR mutations. We also discuss EGFRi sensitivity for complex EGFR mutations, and conclude by offering a perspective on the outstanding questions and future steps required to make advances in the treatment of NSCLC patients that harbour rare EGFR mutations

    Genetic therapies for cystic fibrosis lung disease

    Get PDF
    Gene therapy for cystic ļ¬brosis (CF) has been the subject ofintense research over the last twenty-ļ¬ve years or more, usingboth viral and liposomal delivery methods, but so far withoutthe emergence of a clinical therapy. New approaches to CFgene therapy involving recent improvements to vector systems,both viral and non-viral, as well as new nucleic acidtechnologies have led to renewed interest in the ļ¬eld. The ļ¬eldof therapeutic gene editing is rapidly developing with theemergence of CRISPR/Cas9 as well as chemically modiļ¬edmRNA therapeutics. These new types of nucleic acid therapiesare also a good ļ¬t with delivery by non-viral deliveryapproaches which has led to a renewed interest in lipid-basedand other nanoformulation

    Integrating the International Classification of Functioning, Disability, and Health Model into Massage Therapy Research, Education, and Practice

    Get PDF
    Without an increase in clearly defined and clinically significant outcomes research in masĀ¬sage therapy (MT), the practice is in jeopardy of remaining on the fringes of accepted and utilized therapeutic care. This reality will slow the integration of MT into routine preventive, rehabilitative, curative, and supportive care. The International Classification of Functioning, Disability, and Health (ICF) developed by the World Health Organization is a comprehensive model of functioning and disability that provides a universal taxonomy of human functioning that is recognized globally. Integration of the ICF model into MT research, education, and practice would provide a foundation for a common language, particularly in regard to examining outcomes of MT. Here, we review the dynamic and respected ICF model as it applies to massage research, outcomes dissemination, education, and practice, with these specific objectives: ā€¢ To describe the specific domains of the ICF model ā€¢ To apply the described ICF domains to current massage practice and research ā€¢ To discuss how integration of the ICF model enhances communication and translation among those within and to those outside the MT field The ICF model is ideal for application to MT interests because it works outside the typical focus on pathology or a specific organ system. Instead, the ICF focuses on impairment or limitations in functioning associated with health conditions. The ICF also highlights and incorporates the complex interactions of environment and personal factors and the impact that those factors exert on the domains of body structure, activity, and participation. This interaction has unique implications for MT practitioners, researchers, and clients/patients. Furthermore, the ICF model provides a framework for classifying outcomes, which is a critical aspect of clinical research

    Spatial localisation of Discoidin Domain Receptor 2 (DDR2) signalling is dependent on its collagen binding and kinase activity.

    Get PDF
    Discoidin Domain Receptor 2 (DDR2) is a collagen-binding receptor tyrosine kinase that initiates delayed and sustained tyrosine phosphorylation signalling. To understand the molecular basis of this unique phosphorylation profile, here we utilise fluorescence microscopy to map the spatiotemporal localisation of DDR2 and tyrosine phosphorylated proteins upon stimulation with collagen. We show that cellular phosphorylated proteins are localised to the interface where DDR2 is in contact with collagen and not in the early endosomes or lysosomes. We find that DDR2 localisation is independent of integrin activation and the key DDR2 signalling effector SHC1. Structure-function analysis reveals that DDR2 mutants defective for collagen binding or kinase activity are unable to localise to the cell surface, demonstrating for the first time that both collagen binding and kinase functions are required for spatial localisation of DDR2. This study provides new insights into the underlying structural features that control DDR2 activation in space and time

    The Precursors and Products of Justice Climates: Group Leader Antecedents and Employee Attitudinal Consequences

    Get PDF
    Drawing on the organizational justice, organizational climate, leadership and personality, and social comparison theory literatures, we develop hypotheses about the effects of leader personality on the development of three types of justice climates (e.g., procedural, interpersonal, and informational), and the moderating effects of these climates on individual level justice- attitude relationships. Largely consistent with the theoretically-derived hypotheses, the results showed that leader (a) agreeableness was positively related to procedural, interpersonal and informational justice climates, (b) conscientiousness was positively related to a procedural justice climate, and (c) neuroticism was negatively related to all three types of justice climates. Further, consistent with social comparison theory, multilevel data analyses revealed that the relationship between individual justice perceptions and job attitudes (e.g., job satisfaction, commitment) was moderated by justice climate such that the relationships were stronger when justice climate was high

    CRISPR Deletion of a SVA Retrotransposon Demonstrates Function as a cis-Regulatory Element at the TRPV1/TRPV3 Intergenic Region

    Get PDF
    SINE-VNTR-Alu (SVA) retrotransposons are a subclass of transposable elements (TEs) that exist only in primate genomes. TE insertions can be co-opted as cis-regulatory elements (CREs); however, the regulatory potential of SVAs has predominantly been demonstrated using bioinformatic approaches and reporter gene assays. The objective of this study was to demonstrate SVA cis-regulatory activity by CRISPR (clustered regularly interspaced short palindromic repeats) deletion and subsequent measurement of direct effects on local gene expression. We identified a region on chromosome 17 that was enriched with human-specific SVAs. Comparative gene expression analysis at this region revealed co-expression of TRPV1 and TRPV3 in multiple human tissues, which was not observed in mouse, highlighting key regulatory differences between the two species. Furthermore, the intergenic region between TRPV1 and TRPV3 coding sequences contained a human specific SVA insertion located upstream of the TRPV3 promoter and downstream of the 3' end of TRPV1, highlighting this SVA as a candidate to study its potential cis-regulatory activity on both genes. Firstly, we generated SVA reporter gene constructs and demonstrated their transcriptional regulatory activity in HEK293 cells. We then devised a dual-targeting CRISPR strategy to facilitate the deletion of this entire SVA sequence and generated edited HEK293 clonal cell lines containing homozygous and heterozygous SVA deletions. In edited homozygous āˆ†SVA clones, we observed a significant decrease in both TRPV1 and TRPV3 mRNA expression, compared to unedited HEK293. In addition, we also observed an increase in the variability of mRNA expression levels in heterozygous āˆ†SVA clones. Overall, in edited HEK293 with SVA deletions, we observed a disruption to the co-expression of TRPV1and TRPV3. Here we provide an example of a human specific SVA with cis-regulatory activity in situ, supporting the role of SVA retrotransposons as contributors to species-specific gene expression

    Monitoring the initial pulmonary absorption of two different beclomethasone dipropionate aerosols employing a human lung reperfusion model

    Get PDF
    BACKGROUND: The pulmonary residence time of inhaled glucocorticoids as well as their rate and extend of absorption into systemic circulation are important facets of their efficacy-safety profile. We evaluated a novel approach to elucidate the pulmonary absorption of an inhaled glucocorticoid. Our objective was to monitor and compare the combined process of drug particle dissolution, pro-drug activation and time course of initial distribution from human lung tissue into plasma for two different glucocorticoid formulations. METHODS: We chose beclomethasone dipropionate (BDP) delivered by two different commercially available HFA-propelled metered dose inhalers (Sanasthmax(Ā®)/Becloforteā„¢ and Ventolair(Ā®)/Qvarā„¢). Initially we developed a simple dialysis model to assess the transfer of BDP and its active metabolite from human lung homogenate into human plasma. In a novel experimental setting we then administered the aerosols into the bronchus of an extracorporally ventilated and reperfused human lung lobe and monitored the concentrations of BDP and its metabolites in the reperfusion fluid. RESULTS: Unexpectedly, we observed differences between the two aerosol formulations Sanasthmax(Ā®)/Becloforteā„¢ and Ventolair(Ā®)/Qvarā„¢ in both the dialysis as well as in the human reperfusion model. The HFA-BDP formulated as Ventolair(Ā®)/Qvarā„¢ displayed a more rapid release from lung tissue compared to Sanasthmax(Ā®)/Becloforteā„¢. We succeeded to explain and illustrate the observed differences between the two aerosols with their unique particle topology and divergent dissolution behaviour in human bronchial fluid. CONCLUSION: We conclude that though the ultrafine particles of Ventolair(Ā®)/Qvarā„¢ are beneficial for high lung deposition, they also yield a less desired more rapid systemic drug delivery. While the differences between Sanasthmax(Ā®)/Becloforteā„¢ and Ventolair(Ā®)/Qvarā„¢ were obvious in both the dialysis and lung perfusion experiments, the latter allowed to record time courses of pro-drug activation and distribution that were more consistent with results of comparable clinical trials. Thus, the extracorporally reperfused and ventilated human lung is a highly valuable physiological model to explore the lung pharmacokinetics of inhaled drugs
    • ā€¦
    corecore